Pregled bibliografske jedinice broj: 392333
Difficult-to-Measure Process Variable Estimation Based on Plant Data
Difficult-to-Measure Process Variable Estimation Based on Plant Data // Proceedings of 26th IEEE International Conference Science in Practice / Martinović, Goran ; Ivanović, Milan (ur.).
Osijek: Grafoplast, 2008. str. 111-118 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 392333 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Difficult-to-Measure Process Variable Estimation Based on Plant Data
Autori
Slišković, Dražen ; Grbić, Ratko ; Hocenski, Željko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 26th IEEE International Conference Science in Practice
/ Martinović, Goran ; Ivanović, Milan - Osijek : Grafoplast, 2008, 111-118
ISBN
978-953-6032-62-4
Skup
26th International Conference Science in Practice, SiP 2008 ; IEEE
Mjesto i datum
Osijek, Hrvatska, 05.05.2008. - 07.05.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
process modeling; plant data; difficult-to-measure process variable estimation; projection into a latent space
Sažetak
Important process variables which give information about the final product quality cannot often be measured by a sensor, but their value is determined based on laboratory analysis. In order to enable a continuous monitoring of a process variable and an efficient process control, it is necessary to estimate this difficult-to-measure process variable. This paper deals with the appropriate methodology for building a suitable process model based on plant data, taken from the process database. Regression methods based on the input space projection into a latent subspace are proposed to build a model. Some properties of neural networks which make them a good basis for data based model building as well as for realization of the difficult-to-measure process variable estimator are pointed out. The properties of some proposed methods for process model building are demonstrated by modeling the crude oil distillation process based on the measuring data available.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek