Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 3825

A Knot Insertion Algorithm for Weighted Cubic Splines


Rogina, Mladen
A Knot Insertion Algorithm for Weighted Cubic Splines // Curves and Surfaces with Applications in CAGD / Alain Le Mehaute, Christophe Rabut, Larry Schumaker (ur.).
Nashville (TN) : London: Vanderbilt University Press, 1997. str. 387-395 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 3825 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Knot Insertion Algorithm for Weighted Cubic Splines

Autori
Rogina, Mladen

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Curves and Surfaces with Applications in CAGD / Alain Le Mehaute, Christophe Rabut, Larry Schumaker - Nashville (TN) : London : Vanderbilt University Press, 1997, 387-395

Skup
3. International Conference on Curves and Surfaces

Mjesto i datum
Chamonix, Francuska, 27.06.1997. - 03.07.1997

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
weighted spline;Chebyshev spline; recurrence relations; B-splines

Sažetak
One of the main reasons why polynomial splines play an important role in computer--aided design as well as in diverse areas of approximation theory and numerical analysis is the fact that they can be represented as linear combination of B-splines. There are nice and stable algorithms for evaluation of such splines and their derivatives and integrals. The well known tools of knot insertion and degree raising can be enhanced by introducing still more additional parameters, and relaxing the continuity conditions at the knots by prescribing jumps in their derivatives. The purpose of this paper is to derive recurrence formulae for some related B-splines, and to exploit the underlying connection with the theory of Chebyshev splines. The cubic version of the jump spline is then recognized as Foley"s $ u-$spline, often used in minimizing functionals like $V(f):,=sum_{i=1}^n (w_i int_{t_i}^{t_{i+1}}[D^2f(t)]^2dt+ u_iint_{t_i}^{t_{i+1}}[Df(t)]^2 dt)$, $ u_i geq 0$, $w_i > 0$. The parametric version is often used as a polynomial alternative to the exponential spline in tension in computer--aided geometric design. It is shown how the associated B-splines can be calculated by a knot--insertion algorithm, and this in turn motivates a definition of certain generalized discrete splines.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037011

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Mladen Rogina (autor)


Citiraj ovu publikaciju:

Rogina, Mladen
A Knot Insertion Algorithm for Weighted Cubic Splines // Curves and Surfaces with Applications in CAGD / Alain Le Mehaute, Christophe Rabut, Larry Schumaker (ur.).
Nashville (TN) : London: Vanderbilt University Press, 1997. str. 387-395 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Rogina, M. (1997) A Knot Insertion Algorithm for Weighted Cubic Splines. U: Alain Le Mehaute, Christophe Rabut, Larry Schumaker (ur.)Curves and Surfaces with Applications in CAGD.
@article{article, author = {Rogina, Mladen}, year = {1997}, pages = {387-395}, keywords = {weighted spline, Chebyshev spline, recurrence relations, B-splines}, title = {A Knot Insertion Algorithm for Weighted Cubic Splines}, keyword = {weighted spline, Chebyshev spline, recurrence relations, B-splines}, publisher = {Vanderbilt University Press}, publisherplace = {Chamonix, Francuska} }
@article{article, author = {Rogina, Mladen}, year = {1997}, pages = {387-395}, keywords = {weighted spline, Chebyshev spline, recurrence relations, B-splines}, title = {A Knot Insertion Algorithm for Weighted Cubic Splines}, keyword = {weighted spline, Chebyshev spline, recurrence relations, B-splines}, publisher = {Vanderbilt University Press}, publisherplace = {Chamonix, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font