ࡱ> (*'%` ,bjbjٕ .<] D,4=??????$ h #fcEc==V@( @q  <00r# r#r#cc   Prof. Damir Jelaska PRORA UN UPUIVANJA POGONA ZATVARANJA CJEVOVODA ZAKLOPKOM Split, srpanj 2008. Projektni zadatak Za ve konstruiranu klapnu za zatvaranje dimnog cjevovoda ija kompletna konstrukcija je dostavljena, potrebno je provjeriti izbor elektromotornog pogona tj. za odabrani pogon odrediti vrijeme potrebno za zatvaranje zaklopke. Za elektromotorni pogon prema slici u prilogu dostavljeni su sljedei podaci: Nominalna brzina vrtnje elektromotora: 1400 okr/min Izlazna brzina iz elektromotor- pogona: 32 okr/min Prenosni omjeri svakog stupnja pogona Te~ina elektromotora: cca 1 kg Izlazni okretni moment iz elektromotornog pogona: 4.000 Nm. Vrijeme potrebno za postizanje stacionarne brzine vrtnje Od trenutka pokretanja pa do stacionarne brzine vrtnje (ona je za elektromotor 1.400 okr/min, a za osovinu zaklopke 0,25 okr/min) jednad~ba (ubrzanog) okretnog gibanja svih pokretnih masa, prema II Newtonovom zakonu za okretno gibanje je:  EMBED Equation.DSMT4  gdje je TP = TP() okretni moment elektromotornog pogona, TR okretni moment potreban za zakretanje zaklopke, Ttr moment trenja u le~ajima osovine zaklopke, Iuk reducirani moment inercije svih pokretnih masa sveden na osovinu zaklopke, epsilon  kutno ubrzanje okretnih dijelova a  kutna brzina okretnih masa. Integriranjem gornjeg izraza dobiva se izraz za vrijeme potrebno za postizanje stacionarne brzine vrtnje:  EMBED Equation.DSMT4  Okretni moment TR potreban za zakretanje zaklopke sastoji se od okretnog momenta zHJ $ D V 8 : T V ֽ~ujaVNh rmHsHh r6H*mHsHh r6mHsHhu/6H*mHsHhu/6mHsHh hu/mHsH!jhu/hu/EHUmHsHj%L hu/CJUVaJjhu/UmHsHhu/mHsHh 6mHsHh( mHsHhmHsHh mHsHh6mHsHh5mHsHh3(mHsHhmHsH   "J $a$gd $a$gd$a$gd, $ R T V $a$gd9 & Fgd & Fxgd( & Fxgd & Fxgdxgd gd & Fgd $a$gd $a$gdTVXvJL"$RTVXZz|paPpHh3mHsH!jh( h( EHUmHsHj%L h( CJUVaJjh( UmHsHh( h( mHsHh rh96mHsHh( mHsHh( h96mHsHh9h96H*mHsHh9h96mHsHh9mHsHhu/hu/6H*mHsHhu/hu/6mHsHhu/mHsHh rmHsHh rh r6mHsHL "Z\""""~####%%b%d%%%f&h&&&&&V'X'$a$gd( $xa$gd9z|~""""""""##|#~##########$$%%J%ݧݧݧ{skkckWkjh/~UmHsHh4OmHsHh/~mHsHhSmHsH!j hShSEHUmHsHj=%L hSCJUVaJjh rUmHsHh rmHsH!jh3h rEHUmHsHjb%L h rCJUVaJjh3UmHsHUh3mHsHhu/h36H*mHsHhu/h36mHsHa okretanje pladnja i okretnog momenta za okretanje nosa a (rebara):  EMBED Equation.DSMT4  Nm Moment trenja pribli~no je jednak zbroju momenata trenja u le~ajevima osovine zaklopke:  EMBED Equation.DSMT4  Nm. Moment pogonske strane je promjenjivi moment elektromotora umanjen za prenosni omjer. Za poznatu momentnu karakteristiku mo~e ga se (na osovini zaklopke) procijeniti kao:  EMBED Equation.DSMT4 4.200 Nm na izlzu iz prenosnika pokretanog trofaznim asinkronim motorom. Moment inercije okretnih masa reduciran na osovinu zaklopke je:  EMBED Equation.DSMT4   EMBED Equation.DSMT4 kgm2 Prema Steinerovom pou ku, moment inercije za pladanj je:  EMBED Equation.DSMT4  kgm2 itd. Prvi lan izraza za Iuk jednak je  EMBED Equation.DSMT4  kgm2 , drugi se procjenjuje na 5000 kgm2, a svi ostali na 90 kgm2, pa je Iuk H" 100.000 kgm2. Vrijeme do postizanja stacionarne brzine vrtnje je sada:  EMBED Equation.DSMT4 s Ukupno vrijeme potrebno za zatvaranje zaklopke Kut prebrisan od osovine zaklopke do vremena postizanja stacionarne brzine (ubrzano kru~no gibanje je:  EMBED Equation.DSMT4 . Preostali kut do 900 (900   = 89,430) prebriae se jednolikim kru~nim gibanjem u vremenu  EMBED Equation.DSMT4 s. Ukupno vrijeme potrebno za zatvaranje zaklopke je: t uk = ts + t2 = 0, 57 + 59,6 = 60,17 s. J%L%N%P%`%d%%%%%%%%%%d&f&h&j&&&&&&&&&&&&&ûûûû˯ˠˇ{l[{Sh6mHsH!jhXwhiEHUmHsHjl&L hiCJUVaJjhXwUmHsHhXwmHsH!jKh4OhXwEHUmHsHj%L hXwCJUVaJjh4OUmHsHh-xmHsHh/~mHsHh4OmHsHjh/~UmHsH!j&h/~h6EHUmHsHjs%L h6CJUVaJ&&&&X'Z''''''''''''' ("($(&(((.(0(6(8(j(l(òަރtc[SJSS[hE;H*mHsHhE;mHsHhimHsH!j "hTtNhiEHUmHsHj&L hiCJUVaJjhTtNUmHsHhTtNH*mHsHhTtNhTtN6H*mHsHhTtNhTtN6mHsH!jh6h6EHUmHsHj%L h6CJUVaJjh6UmHsHhTtNmHsHh6mHsHhXwmHsHh6H*mHsHX'''''''8(:(((((b)d))))**+ +++++d,gdyV & Fgdi$a$gd( l(x(z(|(((((((((((((((((())d)f))))))))*****˽}tll`ljhvZ=UmHsHhvZ=mHsHhi6mHsH!ji&hE;hiEHUmHsHj@&L hiCJUVaJjhE;UmHsHhE;hE;mHsHhE;H*mHsHhE;hE;6H*mHsHhE;hE;6mHsHhimHsHhgmHsHhE;H*mHsHhE;mHsHhpmHsH$*++++0+2+4+6+:+<+T+V+Z+j+r++++++++++++Z,úòË|kӲËS.hyVhyV56CJOJQJ^JaJmHsH!j+/hvZ=hKTEHUmHsHj$&L hKTCJUVaJhyVmHsHhKThvZ=mHsHhKTH*mHsHhKThKTmHsHhKTmHsHhvZ=H*mHsHhvZ=mHsHh"amHsHjhvZ=UmHsH!j*hvZ=hvZ=EHUmHsHj>&L hvZ=CJUVaJZ,d,f,j,n,v,x,~,,,,,,,,,,㻰hvZ=hyVmHsHhyVhyVmHsHhXq?mHsHhyVhyVH*mHsHhyV6H*mHsHhyV6mHsHhyVmHsH(hyV56CJOJQJ^JaJmHsHd,f,,,$a$gd( gdyV,1h/ =!"#$% Dd lb  c $A? ?3"`?21Uw$PD`!1Uw$P 2xڭTMhA~3f_ۀ^4x&QsH ͂&l9(B"DOzԛ PГ ^z`.uT0Iԗٷgox$NTΘm1nMk};y'W<@M(^%_b*; ɬ~YiVT́Anp85GV\ͭ2t V=sJjMTToK,JRSz>SYO)xPeXdV|ǁ_ťM1ɩ1$$:wڕEcKAP"IZV>W/w }kzc LJ>|$]=.{yMCp4pu,RԒgQ4 ӚT-Zn gI`-R,Ndk\WSi>gQl3ZW js$9~EfVl<2Hj} ڻ=0!5Ac}D~.o3-2q!a m `4:n̋4Y͛aɳ)$`?8NCaؚ͝Qa1B LoWWXʩ%&W?xGkPJSDm'Qケ6B+S_ " 㔱3H*j_H H(,p`A`[q{opsa92c 2gip ǪrSZS .PgK԰yeƳ[†^r1PZ&niGJ6[+h`AX5a>7>m{jδ rDd d|b  c $A? ?3"`?20_IXvB "`!_IXvBR(`>0xڕTKQy5J7J?XXQ%&iBDLcbR7"^?@Z{*<ٕS~yUǴdOIZ<ɧio:Mt`nt+Jaw/] ¦Tm/H0WbDd lb  c $A? ?3"`?2.C|bt  `!.C|bt P.NxڵUMLSA_@DRĤBi bk8ZPC[W\$LԃwHG=r`}m qvw޷G}4`"M"Kj5Q$dD=3z(o@Ԙ26+K_ȣIXE"Y?Ih@)Sg:{dP0U;,Х`gd`~Si5K=(K[DtSz.B͏؝Gq٦vc^ȸ?q{F1؆5'pe38'ߤ);ѡa`> 2-l܏VcĭbtkdU/qj 8*;ȜX]hQ3K!YeC_c1,l^WQc2_=8 qV2r %q#k82 tT7q|sW[HE]eX P.˜7fE!z%"1ü:c4Mnlj G8fDRHBY~:9 `>'dӆrwi>ƝB> vE6C2NWΠa B5R=WݜHdp9_W#jxw"T &PlY@<#Kj_ 4/61JY@BыZpG5×\ &Cu5Xmc ړD&\e= T+%H} %#|;L2ڠWu|R;W$0%VSRR[A'%  !"#$%&N),G-./0132456789:<;=?>@BADCFEHIJLKM`aOPQRSTUVWXYZ[\]^_bdefghijklmnopqrstRoot EntryA F++Data h3WordDocument@.<ObjectPoolC@q_1277541053F@q@qOle CompObjiObjInfo  !"%()*+,-.1456789<?@ABCDEFGHKNOPQRSTUVWX[^_`abcdefghknopqrstux{|}~ FMathType 6.0 Equation MathType EFEquation.DSMT49q `RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  ST==T Equation Native _1277542406 F@q@qOle  CompObj iP "-T R "-T tr ==I uk e==I uk  dwdt FMathType 6.0 Equation MathType EFEquation.DSMT49q,`RDSMT6WinAllBasicCodePagesObjInfo Equation Native _1277543778 "F@q@qOle Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  t s ==I uk q dwT P "-T R "-T tr0t s +" FMathType 6.0 Equation MathTyCompObjiObjInfoEquation Native 4_1277543485F@q@qpe EFEquation.DSMT49q`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  T R ==0,35G p l p ++0,33G n l n ==0,35"1705"0,54++0,33"560"0,38==392 FMathType 6.0 Equation MathType EFEquation.DSMT49q`RDSMT6WinAllBasicCodePagesOle #CompObj$iObjInfo&Equation Native 'Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  T tr ==2m SG2 d os 2==2"0,04" 712,5"9,812 0,062==8,4_1277545587F@q@qOle /CompObj0iObjInfo2 FMathType 6.0 Equation MathType EFEquation.DSMT49q,`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  T P,sr == 1w s qTEquation Native 3_1277546371'F@q@qOle :CompObj ;i P (w)dw 0w s +" H" FMathType 6.0 Equation MathType EFEquation.DSMT49q`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo!=Equation Native >_12775637561$F@q@qOle IG_APAPAE%B_AC_A %!AHA_D_E_E_A  I uk ==I EM  w EM w os () 2 ++SI pr,i  w i w os () 2 ++I pl ++I n ++I os ++I s FMathType 6.0 Equation MathType EFEquation.DSMT49q`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_ECompObj#%JiObjInfo&LEquation Native M_1277548164)F@q@q_A  I EM ==I rot ++I os,m ==m rot  d rot2 8++m os,m  d os,m2 8H"0,6 0,19 2 8++0,6 0,04 2 8==0,003 FMathType 6.0 Equation MathType EFEquation.DSMT49q`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_EOle YCompObj(*ZiObjInfo+\Equation Native ]_A  I pl ==I pl,c ++m pl h 2 ==m pl "r pl2 ++m pl "h 2 ==m pl (r pl2 ++h 2 )==170,50,163 2 ++0,15 2 ()==8,53 FMathType 6.0 Equation MathType EFEquation.DSMT49qt`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_1277563798.F@q@qOle iCompObj-/jiObjInfo0lEquation Native m_1277563968,63F@q@qOle vCompObj24wi_A  I EM  w EM w os () 2 ==0,003 14000,25() 2 ==94.080 FMathType 6.0 Equation MathType EFEquation.DSMT49q.l`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_A %!AHA_D_E_E_A  t s == I uk T P "-T R "-T tr wObjInfo5yEquation Native zJ_1277566782;8F@q@qOle  s == 100.0004.200"-392"-8,4"0,0262==0,69 FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObj79iObjInfo:Equation Native _1277568202=F@q@q`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  j== et 2 2 180p== wt2 180p== 0,0262"6,92 180p==0,57 0 FMathType 6.0 Equation MathType EFEquation.DSMT49q,`RDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle CompObj<>iObjInfo?Equation Native _A  t 2 == j 2  p180w== 89,43" p1800,0262==59,6Oh+'0   @ L X dpxQ3>j3!~櫯vy?~+j%Dd b  c $A? ?3"`?2o뤑 ;](iKj`!C뤑 ;](i P`\xڭUOA3[J)l Yj$ o$؍Ƌڃ! գhză`f?JY7޼! mqTөPnV%Qȧ<[/ȭ|3Y be8JQ>,),(yNnYɅTV()h"9 E;z],qwe|=7ayI*, ʯ(nf:V:ԋm>~2k~[xwmV)_IԄoj6v+ú۬fUQ?hҵ/J rX̧MZ yDd $ b  c $A? ?3"`?2`Jƺ]-lQ|s}&`!`Jƺ]-lQ|s}&p8z/8exڭUMLQv[ F ڃ-ʡ&cRk]qCm%R3g/7WO^ ` unb$yovf|33<W`3 QBJbQ:J5z FmEf͎ k ZP,{+2{v?:! &:KF5"wάvMr2⡪ 4[ZE;)z{DL _ȹ.JX &妑\'֛c*6 ^: 9F%jCP;ثLQtFL'R,KtY90J чT1ő?Y 8DMR9gzK9ۜe:>˚~TT lJjx$y]J`ݬ{e.a4iv:XrSfMF @Zo]&_Xxɽ14,unlDUm[4T{\\٬۬nni6dsKPO` ( `B*.x\}x'!ENi$|DOL~0dp0(d|( fbUL]|7PG}m,){m~\-(kGJm ͅ<E`}z D(6\&+ l}GҪ| n/ʏwC"Ⱥj~+=ǖ\mSKX'z0s %3cB0Uܔ CJ.] NӸjE(E_ʿB@r&Xkڽ\r 9+$S9A;~rs{St Dd b  c $A? ?3"`?2붽G$^`!붽G$^ *@wBxڵVMhQ6?gӦZM#`b=i9D z]5͖$RIP/ċş ЃxQA$"5T0μnj-7ov޼fy j}vd`C8c%b(n$^=j{΍Z(26oaJZH$'Tԁ~ !Y -@7)ZLYՔ)m,n\>SvZ?2r?h@gJ55ݩ{wZ*o~:>]{h#AHE441 ncu9y {Z A &O$FT" &3@9H ``` sy߇8d+-G­ 7a>uGiq"o< flĒ?c^nQ*&Ԉ=@, ̠g/(8 >i5vr'ْTH'QCuh1aP, 5 I=7(=T# >gN~|ݼhL{?{/R c-wtxdl,F zKxjfX xn3p@`" ̽7nKQ}DHVsdLLTrՏfj&ɖHzcZӹ!6շ!2Pp)ۇ"/S"P Sۆs)Qf;WgeuʎBka 嫆bz"J=ä1 S0+ȔSq|mûIĈ$0 dn;pFN$o_&4rHN*Lj S#z~='C"7䊶+Gy~45'{8G[Em7ٳ-Uls`'fVQ}.Q3Bϑop"W15TipV\dzɪvI MzDd b  c $A? ?3"`?22aU`O2NJ6`!2aU`O2NJ6`1L@CfxڥUMLAfv([ ^jR (Bx0k]6-4&M у7z'c/&&3FBb8xS,z0ovۂJ͛{y 4/7)9c9%]ja;s>[K6ٮlSvc$G u' &Փ1ʊ\Ɉ@Ʃd^nH$@7<q)\NXIo6Hkbô+ aIسbB{` ُcM4#5v18󄎺Hen&ֵc!_p!4ƛ:oB2hԦE݁)J'!N 1uHt#6nZjP|;H~a`Dd  b   c $A ? ?3"`?22gӿ=8M"`!~2gӿ=8x$8LxڵUMLA~3Zm -$%ĔRCIckL@- @۰ZO"8N8hbyфգW($z Xhb}o 0̾y̛7 I``%s&5cy]%78XkP:Sȑ3'UW ~eޫ ѩH&|6?>.0/aAR JueЍ9I|n_Pśr:<ӑO({@I&' x[V=:rWf# ,3.́8ou{;AvY^й@`\-pQe,u7˝2,ڡxCZv,OK}Vࢣ>#~1R\,s!%& , FT|D#H6"3j{6*+^K-ZeJR1ߗZ6 ԺUDf䵭"rJ2[׷'y}}jGp,$bݟ5A􆃑x-_'|=Q5'PtTQe1oOޞ+dw&P -_(t\6ODl {:;3)MQZǕl}v{YU 8\- Тgp N L"GAWoEzwW lORvp5 fpjFa7tcOFմ޴i&0JM7]]Cv<7^zZoQ vYo g)erf!gE!6.IhvDd b   c $A ? ?3"`? 28i`F@%)@&`!8i`F@%)@r @02bxڭUOSA"-%@ȣJyPK[HCX-T<%#4~pӐ41HL8xуg įPgW[)ٙ~p )!GhTR8/9ggM&: %́}ux_ZiZ6J䮉ԣU-0D~}Aׄ\vllqUg䩽tnGuBT)I懥?d,'ذŁR3++O d< Դ Ǯ%E*jZY!ϖ=5d:LFzai;*]=vF ^>,V#iL&9 1A5O{I5P}3D;XXap, sMl2,[.bdN- 1D.g^ :ӏkCmXX't0Lz@_N;V{-Mpy$nu깤rC;\:aO)NjzQE)Cru);N7}l&_n 袦: 3+%z1Y]EcWFgt \ֱlNMB ,G|>l0K'b=Dd D b   c $A ? ?3"`? 2Er,zh -Fco/`![Er,zh -Fk )xڵUMLQvB` ZH@* XJ!DxV,Ҳ5cJ ? Ѩѻ!pz:?-EPovޛof\@jvΘ1^*t2jҢ׋1D MTWinEqns   FMicrosoft Office Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH \@\  Heading 2$<@& 56CJOJQJ\]^JaJDA@D Default Paragraph FontRiR  Table Normal4 l4a (k(No List] <  %`abcdefghijklt)On&EFfg34PQqr  a b w x f g 2 3 \ _ 00000000000000000000000000000000 000 0 0 0 0 00 00000000000000000000000000000000000000000000000 00 0 00 00 00 0000zJ%&l(*Z,, X'd,, , F^`4LNQik  g  ] ::::::::::::8@0(  B S  ?$%_lst()NOmn%&Dbeg24OQlpr    ` b v x e g 1 3 [ _ Fa4OQl g \ _ g _ Gn>%hphzq P^`Po(hH.U8^`UOJQJo(hH pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. P^`Po(hH.^`OJQJo(hH pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. P^`Po(hH.TT^T`OJQJo(hH pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h%hpGn?tl       43ttSo( ug\3() f/30w5vZ=Xq?duD8E9LTtN4O5mSKTyV&U_"aip ra+u"FvXw4M9E; u/g /~5=6-x}Q V f!9 f \ _ '''q|''@ } @]  "UnknownGz Times New Roman5Symbol3& z Arial"1hu&u&t&  #r4dX X  2qHX)?2Prof Damir Jelaska Damir Jelaska