Pregled bibliografske jedinice broj: 380377
Integral mean value bounds for h-convex functions
Integral mean value bounds for h-convex functions // Mathematical Inequalities and Applications 2008, Book of Abstracts / Čižmešija, Aleksandra ; Varošanec, Sanja (ur.).
Zagreb: Element, 2008. str. 42-42 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 380377 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Integral mean value bounds for h-convex functions
Autori
Bombardelli, Mea ; Varošanec, Sanja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Mathematical Inequalities and Applications 2008, Book of Abstracts
/ Čižmešija, Aleksandra ; Varošanec, Sanja - Zagreb : Element, 2008, 42-42
Skup
Mathematical Inequalities and Applications 2008
Mjesto i datum
Trogir, Hrvatska, 08.06.2008. - 14.06.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
h-convex function ; integral mean
Sažetak
Let I and J be intervals in {; ; \bf R}; ; , ( 0, 1 ) \subseteq J and let h: J \rightarrow {; ; \bf R}; ; be a non-negative function, h\not\equiv 0. We say that f:I\rightarrow {; ; \bf R}; ; is an h-convex function if f is non-negative and for all x, y\in I, \alpha \in (0, 1), we have f(\alpha x +(1-\alpha)y)\leq h(\alpha)f(x)+h(1-\alpha)f(y). The h-convex functions are a generalization of non-negative convex, s-convex, Godunova-Levin functions and P-functions. This observation leads us to the unified treatment of these several varieties of convexity. Some properties of h-convex functions are discussed. Especially, integral mean value bounds for h-convex function and related results are derived.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-058-1170889-1050 - Ocjene za funkcionale na prostorima funkcija (Perić, Ivan, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb