Pregled bibliografske jedinice broj: 3798
Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier"s conjecture, hyperplane arrangements and quantum groups
Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier"s conjecture, hyperplane arrangements and quantum groups // Mathematical communications (Osijek), 1 (1996), 1-24 (podatak o recenziji nije dostupan, ostalo)
CROSBI ID: 3798 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Study of Gram matrices in Fock representation of multiparametric canonical commutation relations, extended Zagier"s conjecture, hyperplane arrangements and quantum groups
Autori
Meljanac, Stjepan ; Svrtan Dragutin
Izvornik
Mathematical communications (Osijek) (1331-0623) 1
(1996);
1-24
Ključne riječi
multiparametric canonical commutation relations; deformed partial derivatives; lattice of subdivisions; deformed regular representation; quantum bilinear form; Zagier"s conjecture
Sažetak
In this Colloquium Lecture D.Svrtan reported on the joined research with S.Meljanac on the subject given in the title. By quite laborious mathematics it is explained how one can handle systems in which each Heisenberg commutation relation is deformed separately. For Hilbert space realizability a detailed determinant computations (extended Zagier"s one - parametric formulas) are carried out. The inversion problem of the associated Gram matrices on Fock weight spaces is completely solved (Extended Zagier"s conjecture) and a counterexample to the original Zagier"s conjecture is presented in detail.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037009
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb