Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 37867

On a class of stochastic evolution equations - Pathwise approach


Pasarić, Zoran
On a class of stochastic evolution equations - Pathwise approach // Applied Mathematics and Computation
Dubrovnik, Hrvatska, 1999. str. 29-30 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 37867 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On a class of stochastic evolution equations - Pathwise approach

Autori
Pasarić, Zoran

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Applied Mathematics and Computation / - , 1999, 29-30

Skup
Conference on Applied Mathematics and Computation

Mjesto i datum
Dubrovnik, Hrvatska, 13.09.1999. - 18.09.1999

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
generalized random functions; white noise; expectation of solution

Sažetak
Let X be a Banach space, L(X) the Banach algebra of bounded, linear operators on X with uniform topology, and A_j in C(R,L(X)), i=1,...,d (noncommutative) families of linear operators. Let w=(w_j)_{j=1}^d be a real, d-dimensional, Wiener white noise. For u_0 in X, the following evolution equation is solved: partial u(t) / partial t = sum_{j=1}^d w_j(omega,t)A_j(t)u(t), (1) u(0) = u_0. (2) White noise, itself, is given as a distribution-valued stochastic process, w from Omega to D'(R)^d with characteristic functional: C_w(phi_1,...,phi_d)= E(exp {i\sum_j (w_j(.),\phi_j )}) := exp {-1/2 {sum_j ||phi_j||^2} }, with ||\phi||^2:= int |phi(t)|^2 dt. It is well known that almost all trajectories of white noise are distributional derivatives of continuous functions (i.e. of Brownian motion trajectories). Thus, equation (1) may be interpreted pathwise, in the space D'(R,X), provided, multiplication of distributions is suitably defined. To that end, problem (1)-(2) is shifted into the framework of Colombeau algebra of random generalized functions with values in X. It is an associative, differential algebra, containing distributions in a canonical way, preserving differentiation of distributions and multiplication of C^infinity-functions. Then, generalized random evolution family U(t,s), t,s in R is constructed, from which the unique solution reads: u(t)=U(t,0)u_0. Next, it is shown that solution have generalized moments of all orders, and finally, the expectation, i.e. deterministic generalized function Eu, is proved to admit an associated distribution v in C^1(R,X), which satisfies the equation: partial v(t) / partial t = 1/2 sum_{j=1}^d A_j(t)^2 v(t).

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Projekti:
00981305

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Zoran Pasarić (autor)


Citiraj ovu publikaciju:

Pasarić, Zoran
On a class of stochastic evolution equations - Pathwise approach // Applied Mathematics and Computation
Dubrovnik, Hrvatska, 1999. str. 29-30 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Pasarić, Z. (1999) On a class of stochastic evolution equations - Pathwise approach. U: Applied Mathematics and Computation.
@article{article, author = {Pasari\'{c}, Zoran}, year = {1999}, pages = {29-30}, keywords = {generalized random functions, white noise, expectation of solution}, title = {On a class of stochastic evolution equations - Pathwise approach}, keyword = {generalized random functions, white noise, expectation of solution}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Pasari\'{c}, Zoran}, year = {1999}, pages = {29-30}, keywords = {generalized random functions, white noise, expectation of solution}, title = {On a class of stochastic evolution equations - Pathwise approach}, keyword = {generalized random functions, white noise, expectation of solution}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font