Pregled bibliografske jedinice broj: 377865
Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach
Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach // PRICAI 2008: Trends in Artificial Intelligence / Ho, Tu-Bao ; Zhou, Zhi-Hua (ur.).
Berlin : Heidelberg: Springer, 2008. str. 636-645 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 377865 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach
Autori
Gamberger, Dragan ; Lavrač, Nada ; Fuernkranz, Johannes
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
PRICAI 2008: Trends in Artificial Intelligence
/ Ho, Tu-Bao ; Zhou, Zhi-Hua - Berlin : Heidelberg : Springer, 2008, 636-645
ISBN
978-3-540-89196-3
Skup
10th Pacific Rim International Conference on Artificial Intelligence
Mjesto i datum
Hanoi, Vijetnam, 15.12.2008. - 19.12.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Rule learnig; Features; Unknown attribute value; Imprecision of attribute values
Sažetak
Rule learning systems use features as the main building blocks for rules. A feature can be a simple attribute-value test or a test of the validity of a complex domain knowledge relationship. Most existing concept learning systems generate features in the rule construction process. However, the separation of feature generation and rule construction processes has several theoretical and practical advantages. In particular, the proposed transformation from the attribute to the feature space motivates a novel, theoretically justified procedure for handling of unknown attribute values. This approach suggests also a novel procedure for handling imprecision of numerical attributes. The possibility of controlling the expected imprecision of numerical attributes during the induction process is a novel machine learning concept which has a high application potential for solving real world problems.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Dragan Gamberger
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus