Pregled bibliografske jedinice broj: 376356
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution // Fifth Conference on Applied Mathematics and Scientific Computing
Brijuni, Hrvatska, 2007. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 376356 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution
Autori
Mujaković, Nermina
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Fifth Conference on Applied Mathematics and Scientific Computing
/ - , 2007
Skup
Fifth Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Brijuni, Hrvatska, 09.07.2007. - 13.07.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
micropolar fluid; Hoelder continuous; parabolic equation
Sažetak
An initial-boundary value problem for 1-D flow of a compressible viscous heat-conducting micropolar fluid is considered ; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Hoelder continuous on ]0, 1[ and transforming the original problem into homogeneous one we prove that the state function is Hoelder continuous on ]0, 1[x]0, T[, for each T > 0. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.
Izvorni jezik
Engleski
Znanstvena područja
Matematika