Pregled bibliografske jedinice broj: 376309
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution // Boundary Value Problems, 2008 (2008), 1-15 doi:10.1155/2008/189748 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 376309 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution
Autori
Mujaković, Nermina
Izvornik
Boundary Value Problems (1687-2762) 2008
(2008);
1-15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
micropolar fluid; Hoelder continuous; parabolic equation
Sažetak
An initial-boundary value problem for 1-D flow of a compressible viscous heat-conducting micropolar fluid is considered ; the fluid is thermodynamically perfect and polytropic. Assuming that the initial data are Hoelder continuous on ]0, 1[ and transforming the original problem into homogeneous one we prove that the state function is Hoelder continuous on ]0, 1[x]0, T[, for each T > 0. The proof is based on a global-in-time existence theorem obtained in the previous research paper and on a theory of parabolic equations.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Tutek, Zvonimir, MZOS ) ( CroRIS)
Ustanove:
Filozofski fakultet, Rijeka
Profili:
Nermina Mujaković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus