Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 375395

Churn prediction model in retail banking using fuzzy c-means clustering


Džulijana, Popović; Dalbelo Bašić, Bojana
Churn prediction model in retail banking using fuzzy c-means clustering // Informatica, 33 (2008), 2; 243-247 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 375395 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Churn prediction model in retail banking using fuzzy c-means clustering

Autori
Džulijana, Popović ; Dalbelo Bašić, Bojana

Izvornik
Informatica (0350-2325) 33 (2008), 2; 243-247

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
churn prediction; retail banking; fuzzy logic; c-means clustering; k-nn

Sažetak
The paper presents model based on fuzzy methods for churn prediction in retail banking. The study was done on the real, anonymised data of 5000 clients of a retail bank. Real data are great strength of the study, as a lot of studies often use old, irrelevant or artificial data. Canonical discriminant analysis was applied to reveal variables that provide maximal separation between clusters of churners and non-churners. Combination of standard deviation, canonical discriminant analysis and k-means clustering results were used for outliers detection. Due to the fuzzy nature of practical customer relationship management problems it was expected, and shown, that fuzzy methods performed better than the classical ones. According to the results of the preliminary data exploration and fuzzy clustering with different values of the input parameters for fuzzy c-means algorithm, the best parameter combination was chosen and applied to training data set. Four different prediction models, called prediction engines, have been developed. The definitions of clients in the fuzzy transitional conditions and the distance of k instances fuzzy sums were introduced. The prediction engine using these sums performed best in churn prediction, applied to both balanced and non-balanced test sets.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZO ) ( CroRIS)
098-0982560-2563 - Algoritmi strojnog učenja i njihova primjena (Gamberger, Dragan, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Bojana Dalbelo Bašić (autor)

Citiraj ovu publikaciju:

Džulijana, Popović; Dalbelo Bašić, Bojana
Churn prediction model in retail banking using fuzzy c-means clustering // Informatica, 33 (2008), 2; 243-247 (podatak o recenziji nije dostupan, članak, znanstveni)
Džulijana, P. & Dalbelo Bašić, B. (2008) Churn prediction model in retail banking using fuzzy c-means clustering. Informatica, 33 (2), 243-247.
@article{article, author = {D\v{z}ulijana, Popovi\'{c} and Dalbelo Ba\v{s}i\'{c}, Bojana}, year = {2008}, pages = {243-247}, keywords = {churn prediction, retail banking, fuzzy logic, c-means clustering, k-nn}, journal = {Informatica}, volume = {33}, number = {2}, issn = {0350-2325}, title = {Churn prediction model in retail banking using fuzzy c-means clustering}, keyword = {churn prediction, retail banking, fuzzy logic, c-means clustering, k-nn} }
@article{article, author = {D\v{z}ulijana, Popovi\'{c} and Dalbelo Ba\v{s}i\'{c}, Bojana}, year = {2008}, pages = {243-247}, keywords = {churn prediction, retail banking, fuzzy logic, c-means clustering, k-nn}, journal = {Informatica}, volume = {33}, number = {2}, issn = {0350-2325}, title = {Churn prediction model in retail banking using fuzzy c-means clustering}, keyword = {churn prediction, retail banking, fuzzy logic, c-means clustering, k-nn} }




Contrast
Increase Font
Decrease Font
Dyslexic Font