Pregled bibliografske jedinice broj: 3736
On reducibility of parabolic induction
On reducibility of parabolic induction // Israel journal of mathematics, 107 (1998), 29-91 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 3736 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On reducibility of parabolic induction
Autori
Tadić, Marko
Izvornik
Israel journal of mathematics (0021-2172) 107
(1998);
29-91
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
parabolic induction; Jacquet modules; irreducible representations; Jordan-Hoelder series
Sažetak
Jacquet modules of a reducible parabolically induced representation of a reductive p-adic
group reduce in a way consistent with the transitivity of Jacquet modules. This fact can be
used for proving irreducibility of parabolically induced representations. Classical groups are
particularly convenient for application of this method, since we have a very good information
about part of the representation theory of their Levi subgroups (general linear groups are
factors of Levi subgroups, and therefore we can apply the Bernstein-Zelevinsky theory).
In the paper, we apply this type of approach to the problem of determining reducibility of
parabolically induced representations of p-adic Sp(n) and SO(2n+1). We present also a
method for getting Langlands parameters of irreducible subquotients. In general, we describe
reducibility of certain generalized principal series (and some other interesting parabolically
induced representations) in terms of the reducibility in the cuspidal case. When the cuspidal
reducibility is known, we get explicit answers (for example, for representations supported in
the minimal parabolic subgroups, the cuspidal reducibility is well-known rank one reducibility).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037001
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
Uključenost u ostale bibliografske baze podataka::
- Zentralblatt fur Mathematik
- Mathematical Reviews
- Zentralblatt fur Mathematik