Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 372076

Soft Sensors for Estimation and Control of Refinery Plant Emission


Hölbling, Nikolina; Mohler, Ivan; Novak, Mirjana; Bolf, Nenad
Soft Sensors for Estimation and Control of Refinery Plant Emission // Proceeding of Scientific Conference on Students Research 2008 / Poór, Zoltán (ur.).
Veszprém: University of Pannonia, 2008. str. 156-156 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 372076 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Soft Sensors for Estimation and Control of Refinery Plant Emission

Autori
Hölbling, Nikolina ; Mohler, Ivan ; Novak, Mirjana ; Bolf, Nenad

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Proceeding of Scientific Conference on Students Research 2008 / Poór, Zoltán - Veszprém : University of Pannonia, 2008, 156-156

Skup
Scientific Conference on Students Research 2008

Mjesto i datum
Veszprém, Mađarska, 12.11.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
soft sensor; process identification; neural network; sulphur recovery unit

Sažetak
One of common problems in industrial facilities is inability of real-time and continuous measurement of key process variables. As an alternative, the use of soft sensors as process analyzers and laboratory testing is suggested. Soft sensor is defined as an analytical or empirical model, which is used for control and estimation of process variables and properties (e.g. product quality, emission) that are difficult to measure, based on available measurements of input and output variables such as temperature, flow and pressure. This paper is about developing soft sensor models for process control and estimation of H2S and SO2 emissions based on experimental data gathered from sulphur recovery unit. The aim is to remove dangerous components from sour gas streams before they are released into the atmosphere and fulfill strict regulations regarding environmental protection. The soft sensor models were developed by application of neural networks. The best results were achieved with MLPs and neural-fuzzy soft sensor models. Soft sensors are to warn about problems in operation and malfunctions of analyser, to replace the analyser during repair time and servicing, and, at the same time, allow for continously monitoring of sulphur compound emissions.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
125-1251963-1964 - Softverski senzori i analizatori za motrenje i vođenje procesa (Bolf, Nenad, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Mirjana Novak Stankov (autor)

Avatar Url Nenad Bolf (autor)

Avatar Url Ivan Mohler (autor)


Citiraj ovu publikaciju:

Hölbling, Nikolina; Mohler, Ivan; Novak, Mirjana; Bolf, Nenad
Soft Sensors for Estimation and Control of Refinery Plant Emission // Proceeding of Scientific Conference on Students Research 2008 / Poór, Zoltán (ur.).
Veszprém: University of Pannonia, 2008. str. 156-156 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Hölbling, N., Mohler, I., Novak, M. & Bolf, N. (2008) Soft Sensors for Estimation and Control of Refinery Plant Emission. U: Poór, Z. (ur.)Proceeding of Scientific Conference on Students Research 2008.
@article{article, author = {H\"{o}lbling, Nikolina and Mohler, Ivan and Novak, Mirjana and Bolf, Nenad}, editor = {Po\'{o}r, Z.}, year = {2008}, pages = {156-156}, keywords = {soft sensor, process identification, neural network, sulphur recovery unit}, title = {Soft Sensors for Estimation and Control of Refinery Plant Emission}, keyword = {soft sensor, process identification, neural network, sulphur recovery unit}, publisher = {University of Pannonia}, publisherplace = {Veszpr\'{e}m, Ma\djarska} }
@article{article, author = {H\"{o}lbling, Nikolina and Mohler, Ivan and Novak, Mirjana and Bolf, Nenad}, editor = {Po\'{o}r, Z.}, year = {2008}, pages = {156-156}, keywords = {soft sensor, process identification, neural network, sulphur recovery unit}, title = {Soft Sensors for Estimation and Control of Refinery Plant Emission}, keyword = {soft sensor, process identification, neural network, sulphur recovery unit}, publisher = {University of Pannonia}, publisherplace = {Veszpr\'{e}m, Ma\djarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font