Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 371841

Improving Search Effi ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems


Yasuda, Toshiyuki; Ohkura, Kazuhiro
Improving Search Effi ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems // Advances in Artificial Life / F. Almeida e Costa et al. (ur.).
Berlin : Heidelberg: Springer, 2007. str. 325-334


CROSBI ID: 371841 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Improving Search Effi ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems

Autori
Yasuda, Toshiyuki ; Ohkura, Kazuhiro

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Advances in Artificial Life

Urednik/ci
F. Almeida e Costa et al.

Izdavač
Springer

Grad
Berlin : Heidelberg

Godina
2007

Raspon stranica
325-334

ISBN
978-3-540-74912-7

Ključne riječi
Multi-robot System, Reinforcement Learning, Autonomous

Sažetak
We have developed a new reinforcement learning technique called Bayesian-discrimination-function-based reinforcement learning (BRL). BRL is unique, in that it not only learns in the predefi ned state and action spaces, but also simultaneously changes their segmentation. BRL has proven to be more eff ective than other standard RL algorithms in dealing with multi-robot system (MRS) problems, where the learning environment is naturally dynamic. This paper introduces an extended form of BRL that improves its learning effi ciency. Instead of generating a random action when a robot encounters an unknown situation, the extended BRL generates an action calculated by a linear interpolation among the rules with high similarity to the current sensory input. In both physical experiments and computer simulations, the extended BRL showed higher search effi ciency than the standard BRL.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
120-1201787-1786 - CAM tehnologije i modeliranje u oblikovanju deformiranjem i mikrooblikovanju (Math, Miljenko, MZOS ) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada www.springerlink.com

Citiraj ovu publikaciju:

Yasuda, Toshiyuki; Ohkura, Kazuhiro
Improving Search Effi ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems // Advances in Artificial Life / F. Almeida e Costa et al. (ur.).
Berlin : Heidelberg: Springer, 2007. str. 325-334
Yasuda, T. & Ohkura, K. (2007) Improving Search Effi ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems. U: F. Almeida e Costa et al. (ur.) Advances in Artificial Life. Berlin : Heidelberg, Springer, str. 325-334.
@inbook{inbook, author = {Yasuda, Toshiyuki and Ohkura, Kazuhiro}, year = {2007}, pages = {325-334}, keywords = {Multi-robot System, Reinforcement Learning, Autonomous}, isbn = {978-3-540-74912-7}, title = {Improving Search E and \#64259; ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems}, keyword = {Multi-robot System, Reinforcement Learning, Autonomous}, publisher = {Springer}, publisherplace = {Berlin : Heidelberg} }
@inbook{inbook, author = {Yasuda, Toshiyuki and Ohkura, Kazuhiro}, year = {2007}, pages = {325-334}, keywords = {Multi-robot System, Reinforcement Learning, Autonomous}, isbn = {978-3-540-74912-7}, title = {Improving Search E and \#64259; ciency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-robot Systems}, keyword = {Multi-robot System, Reinforcement Learning, Autonomous}, publisher = {Springer}, publisherplace = {Berlin : Heidelberg} }




Contrast
Increase Font
Decrease Font
Dyslexic Font