Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 37116

High confidence association rules for medical diagnosis


Gamberger, Dragan; Lavrač, Nada; Jovanoski, Viktor
High confidence association rules for medical diagnosis // Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop
Sjedinjene Američke Države, 1999. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 37116 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
High confidence association rules for medical diagnosis

Autori
Gamberger, Dragan ; Lavrač, Nada ; Jovanoski, Viktor

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop / - , 1999

Skup
Intelligent Data Analysis in Medicine and Pharmacology IDAMAP'99, a Workshop at the AMIA 1999 Annual Symposium

Mjesto i datum
Sjedinjene Američke Države, 06.11.1999

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
inductive learning; association rules; artery disease

Sažetak
This paper elaborates a simple and general decision model based on the so-called confirmation rules. Confirmation rules are generated separately for each diagnostic class so that selected rules cover (and should hence be able to reliably predict) a significant number of cases of the target class. At the same time, a confirmation rule should not cover the cases of non-target diagnostic classes, and when used for prediction it should exclude the possibility of classifying any of the non-target cases into the target class. In this work we have used and tested the association approach for rule generation, accepting only extremely high confidence rules with reasonable support level as potentially good confirmation rules. Experimental results in the problem of coronary artery disease diagnosis illustrate the approach.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
00980501

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Dragan Gamberger (autor)


Citiraj ovu publikaciju:

Gamberger, Dragan; Lavrač, Nada; Jovanoski, Viktor
High confidence association rules for medical diagnosis // Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop
Sjedinjene Američke Države, 1999. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gamberger, D., Lavrač, N. & Jovanoski, V. (1999) High confidence association rules for medical diagnosis. U: Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop.
@article{article, author = {Gamberger, Dragan and Lavra\v{c}, Nada and Jovanoski, Viktor}, year = {1999}, keywords = {inductive learning, association rules, artery disease}, title = {High confidence association rules for medical diagnosis}, keyword = {inductive learning, association rules, artery disease}, publisherplace = {Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Gamberger, Dragan and Lavra\v{c}, Nada and Jovanoski, Viktor}, year = {1999}, keywords = {inductive learning, association rules, artery disease}, title = {High confidence association rules for medical diagnosis}, keyword = {inductive learning, association rules, artery disease}, publisherplace = {Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font