Pregled bibliografske jedinice broj: 37116
High confidence association rules for medical diagnosis
High confidence association rules for medical diagnosis // Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop
Sjedinjene Američke Države, 1999. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 37116 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
High confidence association rules for medical diagnosis
Autori
Gamberger, Dragan ; Lavrač, Nada ; Jovanoski, Viktor
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. of Intelligent Data Analysis in Medicine and Pharmacology Workshop
/ - , 1999
Skup
Intelligent Data Analysis in Medicine and Pharmacology IDAMAP'99, a Workshop at the AMIA 1999 Annual Symposium
Mjesto i datum
Sjedinjene Američke Države, 06.11.1999
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
inductive learning; association rules; artery disease
Sažetak
This paper elaborates a simple and general decision model based on the so-called confirmation rules. Confirmation rules are generated separately for each diagnostic class so that selected rules cover (and should hence be able to reliably predict) a significant number of cases of the target class. At the same time, a confirmation rule should not cover the cases of non-target diagnostic classes, and when used for prediction it should exclude the possibility of classifying any of the non-target cases into the target class. In this work we have used and tested the association approach for rule generation, accepting only extremely high confidence rules with reasonable support level as potentially good confirmation rules. Experimental results in the problem of coronary artery disease diagnosis illustrate the approach.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA