Pregled bibliografske jedinice broj: 37110
Experiments with noise filtering in a medical domain
Experiments with noise filtering in a medical domain // Proc. of International Conference of Machine Learning
Bled, Slovenija, 1999. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 37110 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Experiments with noise filtering in a medical domain
Autori
Gamberger, Dragan ; Lavrač, Nada ; Grošelj, Ciril
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. of International Conference of Machine Learning
/ - , 1999
Skup
Proc. of International Conference of Machine Learning, ICML'99
Mjesto i datum
Bled, Slovenija, 27.06.1999. - 30.06.1999
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
inductive learning; noise detection; outliers; target theory
Sažetak
The paper presents a series of noise detection experiments in a medical problem of coronary artery disease diagnosis. The following algorithms for noise detection and elimination are tested: a saturation filter, a classification filter, a combined classification-saturation filter, and a consensus saturation filter. The distinguishing feature of the novel consensus saturation filter is its high reliability which is due to the multiple detection of potentially noisy examples. Reliable detection of noisy examples is important for the analysis of patient records in medical databases, as well as for the induction of rules from filtered data, representing genuine characteristics of the diagnostic domain. Medical evaluation in the problem of coronary artery disease diagnosis shows that the detected noisy examples are indeed noisy or non-typical class representatives.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA