Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 370331

Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions


Jukić, Dario; Pezer, Robert; Gasenzer, Thomas; Buljan, Hrvoje
Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions // Physical Review A, 78 (2008), 5; 053602-1 doi:10.1103/PhysRevA.78.053602 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 370331 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions

Autori
Jukić, Dario ; Pezer, Robert ; Gasenzer, Thomas ; Buljan, Hrvoje

Izvornik
Physical Review A (1050-2947) 78 (2008), 5; 053602-1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Lieb-Liniger gas; nonequilibrium dynamics; free expansion

Sažetak
The asymptotic form of the wave functions describing a freely expanding Lieb-Liniger gas is derived by using a Fermi-Bose transformation for time-dependent states, and the stationary phase approximation. We find that asymptotically the wave functions approach the Tonks-Girardeau (TG) structure as they vanish when any two of the particle coordinates coincide. We point out that the properties of these asymptotic states can significantly differ from the properties of a TG gas in a ground state of an external potential. The dependence of the asymptotic wave function on the initial state is discussed. The analysis encompasses a large class of initial conditions, including the ground states of a Lieb-Liniger gas in physically realistic external potentials. It is also demonstrated that the interaction energy asymptotically decays as a universal power law with time, E_int ~ t^{; ; ; − 3}; ; ; .

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
119-0000000-1015 - Nelinearne pojave i valna dinamika u fotoničkim sustavima (Buljan, Hrvoje, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Robert Pezer (autor)

Avatar Url Dario Jukić (autor)

Avatar Url Hrvoje Buljan (autor)

Poveznice na cjeloviti tekst rada:

doi journals.aps.org dx.doi.org link.aps.org

Citiraj ovu publikaciju:

Jukić, Dario; Pezer, Robert; Gasenzer, Thomas; Buljan, Hrvoje
Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions // Physical Review A, 78 (2008), 5; 053602-1 doi:10.1103/PhysRevA.78.053602 (međunarodna recenzija, članak, znanstveni)
Jukić, D., Pezer, R., Gasenzer, T. & Buljan, H. (2008) Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions. Physical Review A, 78 (5), 053602-1 doi:10.1103/PhysRevA.78.053602.
@article{article, author = {Juki\'{c}, Dario and Pezer, Robert and Gasenzer, Thomas and Buljan, Hrvoje}, year = {2008}, pages = {053602-1-053602-9}, DOI = {10.1103/PhysRevA.78.053602}, keywords = {Lieb-Liniger gas, nonequilibrium dynamics, free expansion}, journal = {Physical Review A}, doi = {10.1103/PhysRevA.78.053602}, volume = {78}, number = {5}, issn = {1050-2947}, title = {Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions}, keyword = {Lieb-Liniger gas, nonequilibrium dynamics, free expansion} }
@article{article, author = {Juki\'{c}, Dario and Pezer, Robert and Gasenzer, Thomas and Buljan, Hrvoje}, year = {2008}, pages = {053602-1-053602-9}, DOI = {10.1103/PhysRevA.78.053602}, keywords = {Lieb-Liniger gas, nonequilibrium dynamics, free expansion}, journal = {Physical Review A}, doi = {10.1103/PhysRevA.78.053602}, volume = {78}, number = {5}, issn = {1050-2947}, title = {Free expansion of a Lieb-Liniger gas : Asymptotic form of the wave functions}, keyword = {Lieb-Liniger gas, nonequilibrium dynamics, free expansion} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font