Pregled bibliografske jedinice broj: 369239
Possibility of grain size prediction in AA5754 aluminium ingots using neural networks
Possibility of grain size prediction in AA5754 aluminium ingots using neural networks // International Journal of Cast Metals Research, 21 (2008), 5; 357-363 doi:10.1179/136404608X334053 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 369239 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Possibility of grain size prediction in AA5754 aluminium ingots using neural networks
Autori
Lela, Branimir ; Duplančić, Igor ; Prgin, Jere
Izvornik
International Journal of Cast Metals Research (1364-0461) 21
(2008), 5;
357-363
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Grain size prediction; Direct chill casting; Computer simulation; Neural networks
Sažetak
The approach to the grain size prediction in AA5754 Al alloy ingots based on artificial neural networks (ANN) has been used in the present study. The ANN has been trained on data that was measured in the real industrial conditions during the process of direct chill Al ingots casting. A very complex relation between the numerous casting parameters and the microstructure of the ingots justifies the application of neural networks, which are known for mapping complex and nonlinear systems. A feed forward ANN model with the resilient back-propagation learning algorithm and weight decay regularisation has been developed to relate the grain size to casting rate, meniscus level, casting temperature, water flow for the metal mould cooling and speed of wire for master alloy addition. The results obtained from the ANN are found to be consistent with the theoretical researches and experience from the foundry.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
023-0231926-1748 - UNAPREĐENJE SVOJSTAVA I POSTUPAKA PRERADE ALUMINIJSKIH LEGURA (Duplančić, Igor, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Chemical Abstracts
- Engineering and Earth Sciences
- Engineering Index
- Engineering Materials Abstracts
- Materials Science Citation Index
- Metals Abstracts
- Science Citation Index
- SciSearch and Scopus