Pregled bibliografske jedinice broj: 367337
Selection of optimal training methodology for development of artificial neural network retention model in ion chromatography
Selection of optimal training methodology for development of artificial neural network retention model in ion chromatography // 14th International Symposium on Separation Science, New Achievements in Chromatography, Book of Abstracts / Šegudović, Nikola (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2008. str. 169-169 (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 367337 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Selection of optimal training methodology for development of artificial neural network retention model in ion chromatography
Autori
Cerjan Stefanović, Štefica ; Bolanča, Tomislav ; Ukić, Šime ; Rogošić, Marko ; Bašković, Marin
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
14th International Symposium on Separation Science, New Achievements in Chromatography, Book of Abstracts
/ Šegudović, Nikola - Zagreb : Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2008, 169-169
ISBN
978-953-6894-36-9
Skup
14th International Symposium on Separation Science, New Achievements in Chromatography
Mjesto i datum
Primošten, Hrvatska, 30.09.2008. - 03.10.2008
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
ion chromatography; optimal training methodology; artificial neural network; retention model
Sažetak
The chromatographic property, which has the major impact on the separation quality, is retention. If there is a business expectation to find reasonable separation conditions within a couple of days, then there are only a dozen or so experiments possible before time runs out. Therefore, it is still important to try to apply different methodologies in order to increase predictive ability of retention in overall optimization process. Different training algorithms, activation function, number of hidden layer neurons and number of experimental data points used for training set were optimized until minimum on error surface has been found.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Marko Rogošić
(autor)
Tomislav Bolanča
(autor)
Štefica Cerjan-Stefanović
(autor)
Šime Ukić
(autor)