Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 365146

Singular Points on Surfaces P_4^6


Gorjanc, Sonja; Benić, Vladimir
Singular Points on Surfaces P_4^6 // Abstracts of 13th Colloquium on Geometry and Graphics / E. Jurkin, S. Gorjanc (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2008. str. 6-6 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 365146 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Singular Points on Surfaces P_4^6

Autori
Gorjanc, Sonja ; Benić, Vladimir

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Abstracts of 13th Colloquium on Geometry and Graphics / E. Jurkin, S. Gorjanc - Zagreb : Hrvatsko društvo za geometriju i grafiku, 2008, 6-6

Skup
13th Colloquium on Geometry and Graphics

Mjesto i datum
Poreč, Hrvatska, 07.09.2008. - 11.09.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
quintuple point; quadruple point; tangent cone

Sažetak
The pedal surfaces $\mathcal P_4^6$ with respect to any pole $P$ and one special 1st order 4th class congruence $\mathcal C_4^1$ are 6th order surfaces with a quadruple line. The highest singularity which these surfaces can possess is a quintuple point. The quintuple points on $\mathcal P_4^6$ are classified according to the type of their 5th order tangent cone $-$ six types are obtained. Points on the quadruple line of $\mathcal P_4^6$ are quadriplanar. We distinguish nine types of these points and six of them are the types of pinch-points. Except the singular points on a quadruple line surface $\mathcal P_4^6$ has at least one real double point iff pole $P$ lies on one 5th degree ruled surface (see Fig.~1) and exactly two real double points iff it lies on one parabola.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Sonja Gorjanc (autor)

Avatar Url Vladimir Benić (autor)


Citiraj ovu publikaciju:

Gorjanc, Sonja; Benić, Vladimir
Singular Points on Surfaces P_4^6 // Abstracts of 13th Colloquium on Geometry and Graphics / E. Jurkin, S. Gorjanc (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2008. str. 6-6 (predavanje, domaća recenzija, sažetak, znanstveni)
Gorjanc, S. & Benić, V. (2008) Singular Points on Surfaces P_4^6. U: E. Jurkin, S. (ur.)Abstracts of 13th Colloquium on Geometry and Graphics.
@article{article, author = {Gorjanc, Sonja and Beni\'{c}, Vladimir}, editor = {E. Jurkin, S.}, year = {2008}, pages = {6-6}, keywords = {quintuple point, quadruple point, tangent cone}, title = {Singular Points on Surfaces P\_4\^{}6}, keyword = {quintuple point, quadruple point, tangent cone}, publisher = {Hrvatsko dru\v{s}tvo za geometriju i grafiku}, publisherplace = {Pore\v{c}, Hrvatska} }
@article{article, author = {Gorjanc, Sonja and Beni\'{c}, Vladimir}, editor = {E. Jurkin, S.}, year = {2008}, pages = {6-6}, keywords = {quintuple point, quadruple point, tangent cone}, title = {Singular Points on Surfaces P\_4\^{}6}, keyword = {quintuple point, quadruple point, tangent cone}, publisher = {Hrvatsko dru\v{s}tvo za geometriju i grafiku}, publisherplace = {Pore\v{c}, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font