Pregled bibliografske jedinice broj: 365146
Singular Points on Surfaces P_4^6
Singular Points on Surfaces P_4^6 // Abstracts of 13th Colloquium on Geometry and Graphics / E. Jurkin, S. Gorjanc (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2008. str. 6-6 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 365146 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Singular Points on Surfaces P_4^6
Autori
Gorjanc, Sonja ; Benić, Vladimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts of 13th Colloquium on Geometry and Graphics
/ E. Jurkin, S. Gorjanc - Zagreb : Hrvatsko društvo za geometriju i grafiku, 2008, 6-6
Skup
13th Colloquium on Geometry and Graphics
Mjesto i datum
Poreč, Hrvatska, 07.09.2008. - 11.09.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
quintuple point; quadruple point; tangent cone
Sažetak
The pedal surfaces $\mathcal P_4^6$ with respect to any pole $P$ and one special 1st order 4th class congruence $\mathcal C_4^1$ are 6th order surfaces with a quadruple line. The highest singularity which these surfaces can possess is a quintuple point. The quintuple points on $\mathcal P_4^6$ are classified according to the type of their 5th order tangent cone $-$ six types are obtained. Points on the quadruple line of $\mathcal P_4^6$ are quadriplanar. We distinguish nine types of these points and six of them are the types of pinch-points. Except the singular points on a quadruple line surface $\mathcal P_4^6$ has at least one real double point iff pole $P$ lies on one 5th degree ruled surface (see Fig.~1) and exactly two real double points iff it lies on one parabola.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb