Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 365145

Special Sextics with Quadruple Line


Gorjanc, Sonja; Benić, Vlaadimir
Special Sextics with Quadruple Line // Abstracts of 4th Croatian Mathematical Congress / Rudolf Scitovski (ur.).
Osijek: Hrvatsko matematičko društvo, 2008. str. 29-29 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 365145 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Special Sextics with Quadruple Line

Autori
Gorjanc, Sonja ; Benić, Vlaadimir

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Abstracts of 4th Croatian Mathematical Congress / Rudolf Scitovski - Osijek : Hrvatsko matematičko društvo, 2008, 29-29

Skup
4th Croatian Mathematical Congress

Mjesto i datum
Osijek, Hrvatska, 17.06.2008. - 20.06.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
congruence of lines; inversion; pedal surface of congruence; quintuple point; quadruple straight line

Sažetak
We define a transformation $i^{;n+2};_\Psi : \mathbb P^3\rightarrow \mathbb P^3$ where corresponding points lie on the rays of the 1st order and $n$th class congruences $\mathcal C_n^1$ and are conjugate with respect to a quadric $\Psi$. It is shown that this inversion transforms a plane into the surface of the order $n+2$ which contains $n$-ple straight line. In 3-dimensional Euclidean space we shown that $i^{;n+2};_\Psi$, where $\Psi$ is any sphere with a center $P$, transforms the plane at infinity into the pedal surface of congruence $C^1_n$ with respect to a pole $P$. For special congruence $C^1_4$ (directing lines are Viviani's curve and a straight line which cut it into two points, where one of them is the double point of Viviani's curve) we derived the pedal surfaces which are the 6th order surfaces (sextics) $\mathcal P^6_4$ with a quadruple straight line. For this class we investigate the singularities: the condition for the existence of quintuple point and the type of its tangent cone, the number and type of pinch points on the quadruple line and the conditions for the existence of double points out of the quadruple line.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Sonja Gorjanc (autor)


Citiraj ovu publikaciju:

Gorjanc, Sonja; Benić, Vlaadimir
Special Sextics with Quadruple Line // Abstracts of 4th Croatian Mathematical Congress / Rudolf Scitovski (ur.).
Osijek: Hrvatsko matematičko društvo, 2008. str. 29-29 (predavanje, domaća recenzija, sažetak, znanstveni)
Gorjanc, S. & Benić, V. (2008) Special Sextics with Quadruple Line. U: Rudolf Scitovski (ur.)Abstracts of 4th Croatian Mathematical Congress.
@article{article, author = {Gorjanc, Sonja and Beni\'{c}, Vlaadimir}, year = {2008}, pages = {29-29}, keywords = {congruence of lines, inversion, pedal surface of congruence, quintuple point, quadruple straight line}, title = {Special Sextics with Quadruple Line}, keyword = {congruence of lines, inversion, pedal surface of congruence, quintuple point, quadruple straight line}, publisher = {Hrvatsko matemati\v{c}ko dru\v{s}tvo}, publisherplace = {Osijek, Hrvatska} }
@article{article, author = {Gorjanc, Sonja and Beni\'{c}, Vlaadimir}, year = {2008}, pages = {29-29}, keywords = {congruence of lines, inversion, pedal surface of congruence, quintuple point, quadruple straight line}, title = {Special Sextics with Quadruple Line}, keyword = {congruence of lines, inversion, pedal surface of congruence, quintuple point, quadruple straight line}, publisher = {Hrvatsko matemati\v{c}ko dru\v{s}tvo}, publisherplace = {Osijek, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font