Pregled bibliografske jedinice broj: 365142
Special nth Order Surfaces with (n-2)-ple Line
Special nth Order Surfaces with (n-2)-ple Line // Proceedings of 13th International Conference on Geometry and Graphics
Dresden: Gunter Weiss, 2008. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 365142 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Special nth Order Surfaces with (n-2)-ple Line
Autori
Gorjanc, Sonja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 13th International Conference on Geometry and Graphics
/ - Dresden : Gunter Weiss, 2008
ISBN
978-3-86780-042-6
Skup
13th International Conference on Geometry and Graphics
Mjesto i datum
Dresden, Njemačka, 04.08.2008. - 08.08.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
congruence of lines; inversion; pedal surfaces of congruence; multiple line; multiple point; pinch point
Sažetak
In this paper, in Euclidean space $\mathbb E^3$, we treat the pedal surfaces of special line congruences $\mathcal C^1_{;2k};$ which are of the 1st order and the $2k$th class. We derive the parametric and implicit equations of these surfaces which enable Mathematica visualizations and proving some properties such as their order is $2k+2$, they possess one $2k$-ple straight line and pass through the absolute conic of $E^3$. The properties of their singularities, which do not lie on $2k$-ple line, and of the pinch points on the $2k$-ple line, are also shown.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Sonja Gorjanc
(autor)