Pregled bibliografske jedinice broj: 365079
Circular quartics in isotropic plane obtained as pedal curves of conics
Circular quartics in isotropic plane obtained as pedal curves of conics // Abstracts of the 13th Scientific-Professional Colloquium on Geometry and Graphics
Poreč, Hrvatska, 2008. str. 14-14 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 365079 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Circular quartics in isotropic plane obtained as pedal curves of conics
Autori
Jurkin, Ema
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts of the 13th Scientific-Professional Colloquium on Geometry and Graphics
/ - , 2008, 14-14
Skup
Scientific-Professional Colloquium on Geometry and Graphics (13 ; 2008)
Mjesto i datum
Poreč, Hrvatska, 07.09.2008. - 11.09.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
circular curve; quartic; isotropic plane; pedal curve
Sažetak
The problem will be studied on the projective model of an isotropic plane with the absolute figure (f, F), F incident with f. A curve in the isotropic plane is circular if it passes through the absolute point F. Its degree of circularity is defined as the number of its intersection points with the absolute line f falling into the absolute point F. The pedal curve kN of a given curve k with respect to a conic q is the locus of the foot of the perpendicular to the tangent of the curve k from the pole of the tangent with respect to the conic q. There are four types of the pedal transformation. The conditions that the generating conic has to fulfill in order to obtain a circular quartic of certain type will be determined for each type by using the synthetic (constructive) method. It will be shown that it is possible to get only 2-, 3- and 4-circular quartics by pedal transformation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb
Profili:
Ema Jurkin
(autor)