Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 361195

Development of artificial neural network retention model in ion chromatography by using different training methodologies


Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko; Bašković, Marin
Development of artificial neural network retention model in ion chromatography by using different training methodologies // 10th International School of Ion Chromatography, Book of Abstracts / Bolanča, Tomislav ; Ukić, Šime ; Margeta, Karmen (ur.).
Zagreb: Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, 2008. str. 39-39 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 361195 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of artificial neural network retention model in ion chromatography by using different training methodologies

Autori
Bolanča, Tomislav ; Cerjan Stefanović, Štefica ; Ukić, Šime ; Rogošić, Marko ; Bašković, Marin

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
10th International School of Ion Chromatography, Book of Abstracts / Bolanča, Tomislav ; Ukić, Šime ; Margeta, Karmen - Zagreb : Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, 2008, 39-39

ISBN
978-953-6470-40-2

Skup
10th International School of Ion Chromatography

Mjesto i datum
Brijuni, Hrvatska, 03.06.2008. - 06.06.2008

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
artificial neural network; retention model; ion chromatography

Sažetak
When facing the separation problem where gradient elution is needed the retention modelling in ion chromatography becomes even more complex problem then in isocratic elution mode. One possibility to solve gradient elution optimization problem is by the prediction of retention in gradient elution mode by using isocratic experimental data. The predictive ability of such gradient retention model is than compromised by the model used for isocratic retention modelling. Therefore it is extremely important to develop isocratic elution retention model with as highest predictive ability as possible. The aim of this work is development of the suitable artificial neural network retention model, which can be used in a variety of applications for method development in ion chromatography, particularly if isocratic data are used for gradient predictions and extremely accurate isocratic models are needed for gradient modelling. Different training algorithms are tested: (1) gradient descent algorithm with adaptive learning rate ; (2) Fletcher– Reeves conjugate gradient algorithm ; (3) Polak– Ribiére conjugate gradient algorithm ; (4) Powell– Beale conjugate gradient algorithm ; (5) Quasi-Newton algorithm with Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update ; and (6) Levenberg– Marquardt algorithm with Bayesian regularization ; in order to improve predictive ability of the final retention model. Activation function, number of hidden layer neurons and number of experimental data points used for training set were optimized until minimum on error surface has been found. The results of the extensive testing shows that the developed artificial neural network retention model predicts data well and it can be successfully used for the retention modelling in ion chromatography.

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb


Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko; Bašković, Marin
Development of artificial neural network retention model in ion chromatography by using different training methodologies // 10th International School of Ion Chromatography, Book of Abstracts / Bolanča, Tomislav ; Ukić, Šime ; Margeta, Karmen (ur.).
Zagreb: Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu, 2008. str. 39-39 (poster, međunarodna recenzija, sažetak, znanstveni)
Bolanča, T., Cerjan Stefanović, Š., Ukić, Š., Rogošić, M. & Bašković, M. (2008) Development of artificial neural network retention model in ion chromatography by using different training methodologies. U: Bolanča, T., Ukić, Š. & Margeta, K. (ur.)10th International School of Ion Chromatography, Book of Abstracts.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko and Ba\v{s}kovi\'{c}, Marin}, year = {2008}, pages = {39-39}, keywords = {artificial neural network, retention model, ion chromatography}, isbn = {978-953-6470-40-2}, title = {Development of artificial neural network retention model in ion chromatography by using different training methodologies}, keyword = {artificial neural network, retention model, ion chromatography}, publisher = {Fakultet kemijskog in\v{z}enjerstva i tehnologije Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Brijuni, Hrvatska} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko and Ba\v{s}kovi\'{c}, Marin}, year = {2008}, pages = {39-39}, keywords = {artificial neural network, retention model, ion chromatography}, isbn = {978-953-6470-40-2}, title = {Development of artificial neural network retention model in ion chromatography by using different training methodologies}, keyword = {artificial neural network, retention model, ion chromatography}, publisher = {Fakultet kemijskog in\v{z}enjerstva i tehnologije Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Brijuni, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font