Pregled bibliografske jedinice broj: 359259
Data Mining and Statistical Analyses for High Education Improvement
Data Mining and Statistical Analyses for High Education Improvement // Proceedings of 31st international convention on information and communication technology, electronics and microelectronics - MIPRO 2008, Vol. V. conferences: DE, ISS, miproBIS, LG, SP / Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić Veljko (ur.).
Zagreb: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2008. str. 164-169 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 359259 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data Mining and Statistical Analyses for High Education Improvement
Autori
Vranić, Mihaela ; Pintar, Damir ; Skočir, Zoran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 31st international convention on information and communication technology, electronics and microelectronics - MIPRO 2008, Vol. V. conferences: DE, ISS, miproBIS, LG, SP
/ Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić Veljko - Zagreb : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2008, 164-169
ISBN
978-953-233-040-3
Skup
31st international convention on information and communication technology, electronics and microelectronics - MIPRO 2008
Mjesto i datum
Opatija, Hrvatska, 26.05.2008. - 30.05.2008
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
education; testing objectivity; statistical analyses; predictive data mining
Sažetak
Knowledge creation is essential for process improvement in every type of environment. This is also the case in lecturing and grading students at universities. In this paper a visual representation of data is combined with statistical analysis in order to be used for analyzing objectivity of student testing. Predictive data mining is used for timely recognition of students who require additional attention. Regression analysis and decision trees are methods used for this student selection. Comparison of these two methods, as well as a simple method of score border is also given.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
036-0362027-1638 - Umrežena ekonomija (Skočir, Zoran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb