Pregled bibliografske jedinice broj: 345677
Scale-free Uncertainty Principles And Wegner Estimates For Random Breather Potentials
Scale-free Uncertainty Principles And Wegner Estimates For Random Breather Potentials // Comptes rendus. Mathématique, 353 (2015), 10; 919-923 doi:10.1016/j.crma.2015.08.005 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 345677 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scale-free Uncertainty Principles And Wegner Estimates For Random Breather Potentials
Autori
Nakić, Ivica ; Täufer, Matthias ; Tautenhahn, Martin ; Veselić, Ivan
Izvornik
Comptes rendus. Mathématique (1631-073X) 353
(2015), 10;
919-923
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
scale-free unique continuation property ; equidistribution prop- erty ; observability estimate ; Carleman estimate ; Schrödinger operator ; quantitative uncer- tainty principle ; random breather potential ; Wegner estimate
Sažetak
We present new scale-free quantitative unique continuation principles for Schrödinger operators. They apply to linear combinations of eigenfunctions corresponding to eigenvalues below a predescribed energy, and can be formulated as an uncertainty principle for spectral projectors. This extends recent results of Rojas- Molina & Veselić, and Klein. We apply the scale- free unique continuation principle to obtain a Wegner estimate for a random Schrödinger operator of breather type. It holds for arbitrarily high energies. Schrödinger operators with random breather potentials have a non-linear dependence on random variables. We explain the challanges arising from this non-linear dependence. could be naturally implemented. Based on this criterion, a discretization procedure is constructed for the calculation of the optimal damping coefficient. If the internal damping is present, we show that this procedure can be used to obtain the optimal damping operator in the case of optimization over the set of all admissible damping operators.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ #9345
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Zagrebu
Profili:
Ivica Nakić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts