Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 3452

Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnotežom kapljevina : para primjenom hibridne neuralne mreže


Vampola, Milan; Gosak, Darko
Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnotežom kapljevina : para primjenom hibridne neuralne mreže // XV. Meeting Of Croatian Chemists And Chemical Engineers - Abstracts / Gojo, M. (ur.).
Opatija, Hrvatska: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 1997. (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 3452 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnotežom kapljevina : para primjenom hibridne neuralne mreže
(Batch Rectification Process Modeling For A Systems With Unknown Vapor-Liquid Equilibria Using Hybrid Neural Network)

Autori
Vampola, Milan ; Gosak, Darko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
XV. Meeting Of Croatian Chemists And Chemical Engineers - Abstracts / Gojo, M. - : Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 1997

Skup
XV. Meeting Of Croatian Chemists And Chemical Engineers

Mjesto i datum
Opatija, Hrvatska, 24.03.1997. - 26.03.1997

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
batch rectification; neural network; modeling; vapor-liquid equilibria

Sažetak
In pharmaceutical and fine chemicals industry, process of batch rectification is often used for solvent recovery, waste water purification and similar applications. Very often exact vapor - liquid equilibria data are not available, either because of the organic or inorganic impurities that exists in the mixture, or mixture itself consists of components for witch VLE data can not be found in literature. In this work, a mathematical model is developed for a simulation of the batch rectification process using hybrid neural network. Method is based on the experimental data obtained trough the experiments carried out on the rectification column with known number of theoretical stages. Each experiment was carried out on different predetermined reflux ratio. During the experiment, in regular time intervals, bottom temperature was recorded and samples of the intermediate distillate composition are analyzed. In that way, sets of discrete data values that connects current time, reflux ratio, bottom temperature and distillate composition are formed. In developed hybrid neural model process dynamics is described by differential equations for a material balance and neural net is used for unknown vapor - liquid equilibria data. Multilayered feedforward net is used and trained using backpropagation method applying the conjugate gradient algorithm as a iearning method. Both simulation and experimental test has shown a good agreement between data obtained with neural network model and data obtainedţtrough simulation or real experiment. Method is proved to be robust and easily applicable.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036006

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Milan Vampola (autor)

Avatar Url Darko Gosak (autor)


Citiraj ovu publikaciju:

Vampola, Milan; Gosak, Darko
Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnotežom kapljevina : para primjenom hibridne neuralne mreže // XV. Meeting Of Croatian Chemists And Chemical Engineers - Abstracts / Gojo, M. (ur.).
Opatija, Hrvatska: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 1997. (predavanje, domaća recenzija, sažetak, znanstveni)
Vampola, M. & Gosak, D. (1997) Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnotežom kapljevina : para primjenom hibridne neuralne mreže. U: Gojo, M. (ur.)XV. Meeting Of Croatian Chemists And Chemical Engineers - Abstracts.
@article{article, author = {Vampola, Milan and Gosak, Darko}, editor = {Gojo, M.}, year = {1997}, pages = {252}, keywords = {batch rectification, neural network, modeling, vapor-liquid equilibria}, title = {Modeliranje procesa diskontinuirane rektifikacije sustava s nepoznatom ravnote\v{z}om kapljevina : para primjenom hibridne neuralne mre\v{z}e}, keyword = {batch rectification, neural network, modeling, vapor-liquid equilibria}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Vampola, Milan and Gosak, Darko}, editor = {Gojo, M.}, year = {1997}, pages = {252}, keywords = {batch rectification, neural network, modeling, vapor-liquid equilibria}, title = {Batch Rectification Process Modeling For A Systems With Unknown Vapor-Liquid Equilibria Using Hybrid Neural Network}, keyword = {batch rectification, neural network, modeling, vapor-liquid equilibria}, publisher = {Hrvatsko dru\v{s}tvo kemijskih in\v{z}enjera i tehnologa (HDKI)}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font