Pregled bibliografske jedinice broj: 342804
Closed embeddings into Lipscomb's universal space
Closed embeddings into Lipscomb's universal space // Glasnik Matematički, 42 (2007), 1; 95-108 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 342804 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Closed embeddings into Lipscomb's universal space
Autori
Ivanšić, Ivan ; Milutinović, Uroš
Izvornik
Glasnik Matematički (0017-095X) 42
(2007), 1;
95-108
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Covering dimension; embedding; closed embedding; universal space; generalized Sierpinski curve; Lipscomb's universal space; extension; complete metric space
Sažetak
In this paper we prove that if X is a complete metrizable space of dim X < n+1 and weight not exceeding \tau, then there is a closed embedding of X into the subspace L_n(\tau) of Lipscomb's one-dimensional space J(\tau) consisting of points in J(\tau)^{;n+1}; with at least one irrational coordinate. Furthermore, any map from X to J(\tau)^{;n+1}; can be approximated arbitrarily close by a closed embedding of X into L_n(\tau). Also, relative and pointed versions are obtained. In the separable case an analogous result is obtained, in which the classic triangular Sierpinski curve (homeomorphic to J(3)) is used instead of J(\aleph_0).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372791-2802 - Teorija dimenzije i oblika (Mardešić, Sibe, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews, Zentralblatt für Mathematik