Pregled bibliografske jedinice broj: 333482
On the existence of the best discrete approximation in l_p norm by reciprocals of real polynomials
On the existence of the best discrete approximation in l_p norm by reciprocals of real polynomials // Journal of Approximation Theory, 156 (2009), 2; 212-222 doi:10.1016/j.jat.2008.05.001 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 333482 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the existence of the best discrete approximation in l_p norm by reciprocals of real polynomials
Autori
Jukić, Dragan
Izvornik
Journal of Approximation Theory (0021-9045) 156
(2009), 2;
212-222
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
reciprocals of polynomials; data fitting; discrete rational approximation; existence problem
Sažetak
For the given data $(w_i, x_i, y_i)$, $i=1, \ldots, M$, we consider the problem of existence of the best discrete approximation in $l_p$ norm ($1\leq p<\infty$) by reciprocals of real polynomials. For this problem, the existence of best approximations is not always guaranteed. In this paper, we give a condition on data which is necessary and sufficient for the existence of the best approximation in $l_p$ norm. This condition is theoretical in nature. We apply it to obtain several other existence theorems very useful in practice. Some illustrative examples are also included.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
235-2352818-1034 - Nelinearni problemi procjene parametara u matematičkim modelima (Jukić, Dragan, MZOS ) ( CroRIS)
235-2352818-1039 - Statistički aspekti problema procjene u nelinearnim parametarskim modelima (Benšić, Mirta, MZOS ) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Dragan Jukić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Compu-Math Citation Index
- MathSciNet
- ACM Guide to Computing Literature
- Mathematical Reviews
- Research Alert
- Science Abstracts
- Scopus