Pregled bibliografske jedinice broj: 331261
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling // Physical Review. E : Statistical, Nonlinear, and Soft Matter Physics, 77 (2008), 5; 056102-056109 doi:10.1103/PhysRevE.77.056102 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 331261 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling
Autori
Podobnik, Boris ; Horvatić, Davor ; Pammolli, Fabio ; Wang, Fengzhong ; Stanley, H. Eugene ; Grosse Ivo
Izvornik
Physical Review. E : Statistical, Nonlinear, and Soft Matter Physics (1539-3755) 77
(2008), 5;
056102-056109
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
power law; Laplace distribution; growth rates
Sažetak
We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma_R on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma_R on the average value of the wages with a scaling exponent beta~0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma_R of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma_R on the average payroll with a scaling exponent beta~− 0.08. Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii)Podobnik the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Ekonomija
POVEZANOST RADA
Projekti:
114-0352827-1370 - Istraživanje dugodosežnih korelacija i stohastično modeliranje na nivou stanice
119-0982930-1016 - Elementarne čestice, teorija polja i kozmologija (Picek, Ivica, MZOS ) ( CroRIS)
Ustanove:
Građevinski fakultet, Rijeka,
Prirodoslovno-matematički fakultet, Zagreb,
Zagrebačka škola ekonomije i managementa, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE