Pregled bibliografske jedinice broj: 330931
Quadratic convergence bounds of scaled iterates by the serial Jacobi methods for indefinite Hermitian matrices
Quadratic convergence bounds of scaled iterates by the serial Jacobi methods for indefinite Hermitian matrices // Electronic Journal of Linear Algebra, 17 (2008), 62-87 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 330931 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Quadratic convergence bounds of scaled iterates by the serial Jacobi methods for indefinite Hermitian matrices
Autori
Matejaš, Josip
Izvornik
Electronic Journal of Linear Algebra (1081-3810) 17
(2008);
62-87
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Jacobi method; Scaled matrices; Quadratic convergence
Sažetak
Using the technique from [12], sharp quadratic convergence bounds for scaled Jacobi iterates are derived. The iterates are generated by any serial Jacobi method when applied to a general complex nonsingular Hermitian matrix. The scaled iterates are defined relatively to the diagonal. The estimates depend on the relative separation between the eigenvalues. The assumptions are general, since no monotonic ordering of the diagonal elements within any diagonal block which converges to a multiple eigenvalue is presumed.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372783-3042 - Blok dijagonalizacijske metode (Hari, Vjeran, MZOS ) ( CroRIS)
Ustanove:
Ekonomski fakultet, Zagreb
Profili:
Josip Matejaš
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Mathematical Reviews