Pregled bibliografske jedinice broj: 330912
Perturbation and Location of the Singular Values of Symmetrically Scaled Matrices
Perturbation and Location of the Singular Values of Symmetrically Scaled Matrices // Numerical Analysis and Applied Mathematics / Theodore E. Simos (ur.).
Melville (NY): American Institute of Physics (AIP), 2007. str. 255-258 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 330912 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Perturbation and Location of the Singular Values of Symmetrically Scaled Matrices
Autori
Hari, Vjeran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Numerical Analysis and Applied Mathematics
/ Theodore E. Simos - Melville (NY) : American Institute of Physics (AIP), 2007, 255-258
Skup
International Conference on Numerical Analysis and Applied Mathematics
Mjesto i datum
Krf, Grčka, 16.09.2007. - 20.09.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Singular values; Relative perturbations; Symmetric scaling; Location of the singular values
Sažetak
In this report two new results on the relative perturbations of the singular values of square matrices are presented. The first one considers the scaled diagonally dominant matrices of the form $G=D^*BD$, where $D$ is diagonal and nonsingular. A simple and sharp estimate uses the norm of $B$ in the assumption and in the bound. The second result deals with a general square matrix and uses in the assumption and in the bound the scaled polar factor of the matrix. In addition a new location result for the singular values of a general matrix is presented. The intervals containing the singular values are defined using the absolute values of the diagonal elements of the triangular matrix $R$ which is obtained by the QR factorization with column pivoting of the original matrix. In the bounds for the intervals, the norms of some principal sub-matrices of $DRD$ are used, where $D$ is such that $|\diag (DRD)|=I$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372783-3042 - Blok dijagonalizacijske metode (Hari, Vjeran, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Vjeran Hari
(autor)