Pregled bibliografske jedinice broj: 328539
Global forcing number of grid graphs
Global forcing number of grid graphs // Australasian Journal of Combinatorics, 38 (2007), 47-62 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 328539 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Global forcing number of grid graphs
Autori
Vukičević, Damir ; Došlić, Tomislav
Izvornik
Australasian Journal of Combinatorics (1034-4942) 38
(2007);
47-62
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
global forcing number; grid graph
Sažetak
Let $G$ be a simple connected graph with a perfect matching. Let ${; ; ; \cal M}; ; ; (G)$ denote the set of all perfect matchings in $G$, and $f: {; ; ; \cal M}; ; ; (G) \rightarrow \{; ; ; 0, 1\}; ; ; ^{; ; ; |E(G)|}; ; ; $ a characteristic function of perfect matchings of $G$. Any set $S \subseteq E(G)$ such that $f \left | _S \right .$ is an injection is called a global forcing set in $G$, and the cardinality of smallest such $S$ is called the global forcing number of $G$. In this paper we first establish lower bounds on this quantity and show how it can be computed for certain classes of composite graphs, and then we prove an explicit formula for global forcing number of the grid graph $R_{; ; ; p, q}; ; ; = P_p \times P_q$. We also briefly consider a vertex global forcing number of grid graphs and present an explicit formula for it. In the last section we give explicit formulas for global forcing numbers of complete graphs and discuss some further developments.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0000000-2779 - Diskretna matematika i primjene (Svrtan, Dragutin, MZOS ) ( CroRIS)
177-0000000-0884 - Diskretni matematički modeli u kemiji (Vukičević, Damir, MZOS ) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet