Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 323893

Gradient methods for multiple state optimal design problems


Antonić, Nenad; Vrdoljak, Marko
Gradient methods for multiple state optimal design problems // Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche, 53 (2007), 2; 177-187 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 323893 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Gradient methods for multiple state optimal design problems

Autori
Antonić, Nenad ; Vrdoljak, Marko

Izvornik
Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche (0430-3202) 53 (2007), 2; 177-187

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
optimal design; multiple state equations; stationary diffusion; gradient method

Sažetak
We optimise a distribution of two isotropic materials $\alpha\mI$ and $\beta\mI$ ($\alpha<\beta)$ occupying the given body in $\R^d$. The optimality is described by an integral functional (cost) depending on temperatures $u_1, \ldots u_m$ of the body obtained for different source terms $f_1, \ldots, f_m$ with homogeneous Dirichlet boundary conditions. The relaxation of this optimal design problem with multiple state equations is needed, introducing the notion of composite materials as fine mixtures of different phases, mathematically described by the homogenisation theory. The necessary conditions of optimality are derived via the G\^{; ; ; a}; ; ; teaux derivative of the cost functional. Unfortunately, there could exist points in which necessary conditions of optimality do not give any information on the optimal design. In the case $m<d$ we show that there exists an optimal design which is a rank-$m$ sequential laminate with matrix material $\alpha\mI$ almost everywhere on $\Omega$ . In contrary to the optimality criteria method, which is commonly used for the numerical solution of optimal design problems (although it does not rely on a firm theory of convergence), this result enables us to effectively use classical gradient methods for minimising the cost functional.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Marko Vrdoljak (autor)

Avatar Url Nenad Antonić (autor)

Citiraj ovu publikaciju:

Antonić, Nenad; Vrdoljak, Marko
Gradient methods for multiple state optimal design problems // Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche, 53 (2007), 2; 177-187 (međunarodna recenzija, članak, znanstveni)
Antonić, N. & Vrdoljak, M. (2007) Gradient methods for multiple state optimal design problems. Annali dell'Università di Ferrara. Sezione 7: Scienze matematiche, 53 (2), 177-187.
@article{article, author = {Antoni\'{c}, Nenad and Vrdoljak, Marko}, year = {2007}, pages = {177-187}, keywords = {optimal design, multiple state equations, stationary diffusion, gradient method}, journal = {Annali dell'Universit\`{a} di Ferrara. Sezione 7: Scienze matematiche}, volume = {53}, number = {2}, issn = {0430-3202}, title = {Gradient methods for multiple state optimal design problems}, keyword = {optimal design, multiple state equations, stationary diffusion, gradient method} }
@article{article, author = {Antoni\'{c}, Nenad and Vrdoljak, Marko}, year = {2007}, pages = {177-187}, keywords = {optimal design, multiple state equations, stationary diffusion, gradient method}, journal = {Annali dell'Universit\`{a} di Ferrara. Sezione 7: Scienze matematiche}, volume = {53}, number = {2}, issn = {0430-3202}, title = {Gradient methods for multiple state optimal design problems}, keyword = {optimal design, multiple state equations, stationary diffusion, gradient method} }

Časopis indeksira:


  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • The INSPEC Science Abstracts series
  • Mathematical Reviews





Contrast
Increase Font
Decrease Font
Dyslexic Font