Pregled bibliografske jedinice broj: 321267
Entirely Circular Curves of Order Four in the Hyperbolic Plane Produced by Projective Mapping between two Pencils of Conics
Entirely Circular Curves of Order Four in the Hyperbolic Plane Produced by Projective Mapping between two Pencils of Conics // Abstracts of Conference on Geometry: Theory and Applications
Vorau, Austrija, 2007. (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 321267 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Entirely Circular Curves of Order Four in the Hyperbolic Plane Produced by Projective Mapping between two Pencils of Conics
Autori
Jurkin, Ema
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts of Conference on Geometry: Theory and Applications
/ - , 2007
Skup
Conference on Geometry: Theory and Applications
Mjesto i datum
Vorau, Austrija, 03.06.2007. - 08.06.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
hyperbolic plane; entirely circular quartic; projective mapping
Sažetak
The problem will be studied on the Cayley-Klein's model of the hyperbolic plane. A curve in the hyperbolic plane entirely (completely)circular if it possesses an isotropic asymptote at each intersection point with the absolute. Every curve of order four can be produced by projective mapping between two pencils of conics. The conditions that projective pencils have to fulfill in order to obtain entirely circular quartics of certain type will be determined by using the analytic method. These curves will also be derived in a constructive way.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Ema Jurkin
(autor)