Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 315125

Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography


Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko; Luša, Melita
Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography // Journal of chemometrics, 22 (2008), 1-2; 106-113 doi:10.1002/cem.1096 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 315125 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography

Autori
Bolanča, Tomislav ; Cerjan Stefanović, Štefica ; Ukić, Šime ; Rogošić, Marko ; Luša, Melita

Izvornik
Journal of chemometrics (0886-9383) 22 (2008), 1-2; 106-113

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural network ; training algorithm ; retention modeling ; ion chromatography

Sažetak
The reliability of predicted separations in ion chromatography depends mainly on the accuracy of retention predictions. Any model able to improve this accuracy will yield predicted optimal separations closer to the reality. In this work artificial neural networks were used for retention modeling of void peak, fluoride, chlorite, chloride, chlorate, nitrate and sulfate. In order to increase performance characteristics of the developed model, different training methodologies were applied and discussed. Furthermore, the number of neurons in hidden layer, activation function and number of experimental data used for building the model were optimized in terms of decreasing the experimental effort without disruption of performance characteristics. This resulted in the superior predictive ability of developed retention model (average of relative error is 0.4533%).

Izvorni jezik
Engleski

Znanstvena područja
Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
MZOS-125-1252970-3005 - Biokeramički, polimerni i kompozitni nanostrukturirani materijali (Ivanković, Hrvoje, MZOS ) ( CroRIS)
MZOS-125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko; Luša, Melita
Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography // Journal of chemometrics, 22 (2008), 1-2; 106-113 doi:10.1002/cem.1096 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Cerjan Stefanović, Š., Ukić, Š., Rogošić, M. & Luša, M. (2008) Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography. Journal of chemometrics, 22 (1-2), 106-113 doi:10.1002/cem.1096.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko and Lu\v{s}a, Melita}, year = {2008}, pages = {106-113}, DOI = {10.1002/cem.1096}, keywords = {artificial neural network, training algorithm, retention modeling, ion chromatography}, journal = {Journal of chemometrics}, doi = {10.1002/cem.1096}, volume = {22}, number = {1-2}, issn = {0886-9383}, title = {Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography}, keyword = {artificial neural network, training algorithm, retention modeling, ion chromatography} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko and Lu\v{s}a, Melita}, year = {2008}, pages = {106-113}, DOI = {10.1002/cem.1096}, keywords = {artificial neural network, training algorithm, retention modeling, ion chromatography}, journal = {Journal of chemometrics}, doi = {10.1002/cem.1096}, volume = {22}, number = {1-2}, issn = {0886-9383}, title = {Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography}, keyword = {artificial neural network, training algorithm, retention modeling, ion chromatography} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font