Pregled bibliografske jedinice broj: 314955
Adaptive Polynomial Neural Networks for Times Series Forecasting
Adaptive Polynomial Neural Networks for Times Series Forecasting // Proceedings ELMAR-2007 / Grgić, M ; Grgić, S. (ur.).
Zagreb: Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2007. str. 35-39 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 314955 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Adaptive Polynomial Neural Networks for Times Series Forecasting
Autori
Liatsis, Panos ; Foka, Amalia ; Goulermas, John Yannis ; Mandić, Lidija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings ELMAR-2007
/ Grgić, M ; Grgić, S. - Zagreb : Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2007, 35-39
ISBN
978-953-7044-05-3
Skup
49th International Symposium ELMAR-2007
Mjesto i datum
Zadar, Hrvatska, 12.09.2007. - 14.09.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Genetic Algorithms; polynomial neural networks; time series; forecasting
(genetic algorithms; polynomial neural networks; time series; forecasting)
Sažetak
Time series prediction involves the determination of an appropriate model, which can encapsulate the dynamics of the system, described by the sample data. Previous work has demonstrated the potential of neural networks in predicting the behaviour of complex, non-linear systems. In particular, the class of polynomial neural networks has been shown to possess universal approximation properties, while ensuring robustness to noise and missing data, good generalisation and rapid learning. In this work, a polynomial neural network is proposed, whose structure and weight values are determined with the use of evolutionary computing. The resulting networks allow an insight into the relationships underlying the input data, hence allowing a qualitative analysis of the models´ performance. The approach is tested on a variety of non-linear time series data.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
036-0361630-1635 - Upravljanje kvalitetom slike u radiodifuziji digitalnog videosignala (Grgić, Sonja, MZO ) ( CroRIS)
128-1281957-1958 - Digitalizacija muzejske slikarske baštine (Agić, Darko, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Grafički fakultet, Zagreb
Profili:
Lidija Mandić
(autor)