Pregled bibliografske jedinice broj: 314260
Automated Target Detection and Discrimination Using Constrained Kurtosis Maximization
Automated Target Detection and Discrimination Using Constrained Kurtosis Maximization // IEEE Geoscience and Remote Sensing Letters, 5 (2008), 1; 38-42 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 314260 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automated Target Detection and Discrimination Using Constrained Kurtosis Maximization
Autori
Du, Qian ; Kopriva, Ivica
Izvornik
IEEE Geoscience and Remote Sensing Letters (1545-598X) 5
(2008), 1;
38-42
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
kurtosis; high-order statistics; anomaly detection; target detection; target classification; unsupervised analysis; hyperspectral imagery
Sažetak
Exploiting hyperspectral imagery without prior information is a challenge. Under this circumstance, unsupervised target detection becomes an anomaly detection problem. We propose an effective algorithm for target detection and discrimination based on the normalized fourth central moment named kurtosis, measuring the flatness of a distribution. Small targets in hyperspectral imagery contribute to the tail of a distribution, thus making it heavier. The Gaussian distribution is completely determined by the first two order statistics and has zero kurtosis. Consequently, kurtosis measures the deviation of a distribution from the background and is suitable for anomaly/target detection. When imposing appropriate inequality constraints on the kurtosis to be maximized, the resulting Constrained Kurtosis Maximization (CKM) algorithm will be able to quickly detect small targets with several projections. Compared to the widely used unconstrained kurtosis maximization algorithm, i.e., Fast Independent Component Analysis (FastICA), the CKM algorithm may detect small targets with fewer projections and yield a slightly higher detection rate.
Izvorni jezik
Engleski
Znanstvena područja
Brodogradnja
POVEZANOST RADA
Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivica Kopriva
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series