ࡱ> q`bjbjqPqP ::P  8L, N2L^~W4 NNNNNNN$Ph|R3Ni O"@O"O"3N N///O",   N/O" N//I J@ f*{*\IMLN0NIR,bR4JR JH/ 3N3N9/dNO"O"O"O"    1. INTRODUCTION The increasing growth of worlds population and rapid industrial development cause formation of the huge amount of waste and coloured wastewater respectively. Wastewater from dye manufacturing and application industries presents significant environmental problem due to its colour which is visible even with very low dye concentration in water (10-3 mg L-1), as well as the content of numerous organic compounds unacceptable for the environment. Beside that, limited penetration of light negatively effects to life cycle of flora and fauna (Muruganandham and Swaminathan, 2005) and human health indirectly (Ramirez et al., 2005; Chacn et al., 2006). So, in order to protect the environment, following the principles of cleaner production and sustainable development, dye removal from industrial wastewater presents great issue. New directives and regulations, dictate the need for the finding of optimal solution for the treatment of such wastewater, in order to decrease concentration of hazardous compounds bellow the maximal concentration prescribed by the law. The world production of dye is over 7105 tones/year, within azo dyes are represented with 70% (Arslan et al., 1999). Generally, methods for the coloured wastewater treatment can be grouped as biological, physical and chemical methods (Gupta, 1997). Biological methods have widespread use for the treatment of municipal and industrial wastewater. Despite of the lot of advantages, some contaminants, including the most toxic organic compounds can not be destroyed by biological degradation processes. Physical methods of wastewater treatment (adsorption, flocculation/coagulation, membrane processes, ion exchange) (Malik and Sanyal, 2004), generally present transfer of pollution from one phase to the other and they are often expensive and not eco-efficient. Formation of secondary waste disposal and adsorbents regeneration additionally decreases economical efficiency of these processes. The alternative to the conventional coloured wastewater treatment processes presents advanced oxidation processes (AOPs) that can be applied individually or as a part of integral treatment process. The advantage of these processes in comparison with conventional wastewater treatment methods is the possibility of complete degradation of organic load towards water, carbon dioxide, nitrates, sulphates and chlorides. Advanced oxidation processes include formation of highly reactive species (radicals) under the chemical, electrical or radioactive energy and they can react non-selectively with persistent organic compounds transferring them into by-products which can be degraded much more easily (Ramirez et al., 2005). These intermediates have high oxidation potential and one of the most important is hydroxyl radical (2.8 eV). It can attack and destruct organic compounds towards water and carbon dioxide, i.e. mineralization. (Shu et al., 2004; Levec, 1997). However, AOPs are not suitable for the treatment of heavy loaded industrial wastewater if the concentration of organic compounds exceeds 100-1000 mg C L-1 (Muruganandham and Swaminathan, 2004) because of the relatively high reactants price. Depending on the hydroxyl radical generation, there are different types of AOPs such as Fenton and Fenton like processes, UV photolysis, UV peroxone process, TiO2 photo-catalysis, high voltage electrical discharge, radiolysis, (-radiation Fenton process is based on oxidation with Fenton reagent which presents an oxidative mixture of hydrogen peroxide and ferrous ions (Fe2+) as catalyst. The efficiency of Fenton process depends on: concentration of ferrous (Fe2+) and hydrogen peroxide Eq. (1), their molar ratio, pH of the system and temperature (Chacn et al.; Gupta, 1997). Fe2+ + H2O2 ( Fe3+ + HO- + HO( (1) Decomposition of hydrogen peroxide can be also catalyzed by ferric ions, Fe3+, Eqs. (2) and (3) and iron powder, Fe0, Eq. (4) too. Fe3+ + H2O2 ( Fe2+ + HO2( (2) Fe3+ + HO2( ( Fe2+ + H+ + O2 (3) Fe0 + H2O2 ( Fe2+ + HO- (4) Oxidation power of Fenton type system can be enhanced by irradiation of UV light due to additional source of hydroxyl radicals, Eqs. (5) and (6). H2O2 + h( ( 2HO( (5) Fe3+ + H2O + h( ( HO( + Fe2+ + H+ (6) The scope of this study was to investigate the efficiency of Fenton type processes (Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2) as well as the efficiency of the same processes assisted by UV irradiation, UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2 for the treatment of coloured wastewater containing model pollutant compound, azo dye C.I. Direct Orange 39 (DO39). 2. MATERIALS AND METHODS All reagents used in this work were analytical reagent grade and used without any further purification. Ferrous sulphate (FeSO47H2O), iron powder (Fe0), hydrogen peroxide (30% w/w) and methanol were purchased from Kemika, Zagreb, Croatia. C.I. Direct Orange 39 (Figure 1) was obtained from Bayer AG, D-5090 Leverkusen, Germany as a free of charge sample and ferric sulphate [Fe2(SO4)39H2O] from Alkaloid, Skopje, Macedonia. Azo dye C.I. Direct Orange 39 (DO39) was used as model compound (Figure 1). Figure 1. Structure of C.I. Direct Orange 39 Experiments were performed using model wastewater with initial dye concentration of 20 mg L-1. Series of experiments were conducted in order to determine the optimal iron catalysts/hydrogen peroxide molar ratio for each of the investigated Fenton type processes, Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2. The initial pH of the studied system was adjusted at 3 using 25% of sulphuric acid (Malik and Saha, 2003; Meric et al., 2004; Muruganandham and Swaminathan, 2004), which was followed by the addition of iron catalyst and hydrogen peroxide. Ferrous and ferric sulphate and iron powder were used as the sources of iron catalyst in Fenton type processes studied. The concentration of iron catalyst were 0.5 and 1.0 mM in all experiments, while the concentration of hydrogen peroxide was varied in the range from 1 : 5 1 : 50. The reaction mixture (V = 250 mL) was continuously stirred at room temperature in the open batch reactor with magnetic stirring bar and treated for 2 hours, while dye concentration and TOC values were measured at the end of each experiment to establish decolourization and mineralization extents. Experiments with the highest mineralization extents obtained by the application of Fenton type processes were also repeated in the presence of UV radiation using batch photo reactor consisted of the water-jacketed glass chamber with the total volume of 0.8 L (Figure 2). A quartz tube was placed vertically in the middle of the photo reactor with mercury lamp of 125 W (UV-C, 254 nm) located inside (UVP-Ultra Violet Products, Cambrige, UK).  Figure 2. Schematic diagram of photo reactor The UV lamp was connected to a power supply, UVP-Ultra Products, Upland, CA, USA with the frequency of 50/60 Hz, U = 230 V and I = 0.21 A. The value of incident photon flux by reactor volume unit at 254 nm was calculated on the basis of the ferrioxalate actinometry measurements and found to be I0 = 3.4210-6 Ein-1 L-1 s-1 (Kui et al., 2004). The total reaction volume of the DO39 model wastewater was 0.5 L. Temperature of the system was maintained at 22(0.2 (C by the circulating of the water through the water-jacketed system of the photo reactor. Each experiment was conducted for 120 minutes at atmospheric pressure. Samples were taken periodically at 0., 5., 10., 15., 30., 45., 60., 90 and 120 minutes and subjected to the further analyses. A Perkin-Elmer Lambda EZ 201 UV/VIS spectrophotometer was used for decolourization monitoring at (max = 410 nm, while mineralization extents were determined on the basis of total organic carbon content measurements (TOC), performed by using total organic carbon analyzer; TOC-VCPN 5000 A, Shimadzu. Handylab pH/LF portable pH-meter, Schott Instruments GmbH, Mainz, Germany, was used for pH measurements. Degradation of DO39 in model wastewater, i.e. formation of primary oxidation by-products 1,4-phenylenediamine, sulphanilic acid, hydroquinone, 1,4-benzoquinone, aniline and phenol were analyzed by HPLC using ClassVP Software, Shimadzu, Japan, with a 5 (m, 25.0 cm 4.6 mm, Supelco Discovery C18 column, USA and detected with diode array UV detector, SPD-M10AVP, Shimadzu, Japan. The mobile phase was mixture of 20% of methanol and 80% of water at isocratic flow of mobile phase of 0.8 ml min-1 with sample injection of 20 (L. Monitoring of formation and then the degradation of by-products were performed at ( = 240 nm for 1,4-phenylenediamine (tR = 4,03 min), 1,4-benzoquinone (tR = 8.00 min) and aniline (tR = 13.17 min), ( = 250 nm for sulphanilic acid (tR = 5.72 min), ( = 270 nm for phenol (tR = 21.69 min) and ( = 290 nm for hydroquinone (tR = 5.85 min). The recorded peaks were first identified and then the concentrations of DO39 primary oxidation by-products were determined from their calibration standards. A mathematical model was developed using known chemical reactions and reaction rate constants from the radiation chemistry literature and the literature on Fentons chemistry (Grymonpr et al., 2001). The model included 13 or 15 chemical species and 22 or 24 reactions correspondingly which has been taken into account to depict decolourization and mineralization process of DO39 respectively. The general mass balance for a well-mixed, constant volume and temperature batch reactor is given by ri = dci/dt where ci is concentration of chemical specie i and ri is the rate of the same specie (Nirmalakhandan, 2002). A total of 13 or 15 simultaneous ordinary differential equations were solved using Mathematica 5.0 software (Wolfram Research, Champaign, IL). The overall rate constant for the degradation and mineralization of DO39 with hydroxyl radicals has been estimated with trial and error method fitting the rate in the model. 3. RESULTS AND DISCUSSION The first series of experiments were performed in order to determine the optimal parameters of Fenton and Fenton like processes for degradation and mineralization of DO39 in model wastewater. It has been determined that 1.0 mM concentration of FeSO47H2O is optimal for obtaining a maximal decolourization of 95.6% and mineralization extents of 47.6% after two hours, using molar ratio of Fe2+/H2O2 = 1 : 50. The formed by-products were detected by HPLC analysis and it has been found that on the end of process 9.13 mg L-1 of 1,4-phenylenediamine remains in the system. The optimal concentration of Fe2(SO4)39H2O for achieving of a maximum decolourization and mineralization extents of 97.0% and 64.5% respectively was determined to be 0.5 mM, using molar ratio of Fe3+/ H2O2 = 1 : 5. Also, it has been found out that 0.91 mg L-1 of 1,4-phenylenediamine remains in the reaction mixture after two hours of the treatment.  Figure 3. Decolourization efficiency comparison of Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2 processes after 2 hrs. The optimal concentration of Fe0 for obtaining a maximal decolourization of 91.0% and mineralization extents of 47.9% after two hours was determined as 1.0 mM, using molar ratio of Fe0/H2O2 = 1 : 10. It was detected that 2.00 mg L-1 of 1,4-phenylenediamine still exists in the system at the end of the treatment process. The residual value of total organic carbon in the reaction system after the treatment is due to the presence of formed 1,4-phenylenediamine. Summarized results for the maximal decolourization and mineralization removals of DO39 model wastewater using Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2 are presented with the Figures 3 and 4. It can be seen that maximal decolourization and mineralization extents were achieved in Fe3+/H2O2 processes, using 0.5 mM of Fe2(SO4)39H2O and molar ratio of Fe3+/H2O2 = 1 : 5, during two hours of treatment. These process parameters were applied in the next experiment performed in order to determine kinetics of DO39 degradation and mineralization. The results are presented in Figure 5.  Figure 4. Mineralization efficiency comparison of Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2 processes after 2 hrs.  Figure 5. Kinetics of decolourization and mineralization for the optimal Fe3+/H2O2 process It can be seen that around 90% of colour was removed after 5 minutes of the treatment process. Decolourization extent remains more or less constant up to the end of the process. Proposed model compares well with the experimental data. Discrepancy for the first 15 minutes of decolourization could be caused by formation of yellowish ferric complexes which spectra interferes with DO39 spectra. On the other hand, mineralization was occurring slower. In the first 5 minutes, around 43% of total organic compound was removed and additional 22% up to the end of treatment process. That can be explained with the fact that hydroxyl radicals formed in Fe3+/H2O2 process firstly attack chromophore (N=N( bond in DO39 molecule leading to the formation of by-products which are then degraded with hydroxyl radicals up to the end of the process. In order to determine the impact of UV radiation on the increasement of process efficiency in Fe2+/H2O2, Fe3+/H2O2 and Fe0/H2O2 AOPs, optimal process parameters from the previous investigations were used in UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2 processes. The results of those experiments are presented with Figures 6 and 7. From the Figure 6, it can be seen that a maximal decolourization extent of 93.2% was obtained in the UV/Fe3+/H2O2 process, using molar ratio of Fe3+/H2O2 = 1 : 5 and 0.5 mM concentration of Fe2(SO4)39H2O. On the other hand, with the same process, a maximal mineralization extent was found to be 76.9% (Figure 7). Also, it was detected that 0.89 mg L-1 of 1,4-phenylenediamine remains in the system after two hours of the treatment process. Zhao et al. studied the degradation of Acridine Orange using the photo-Fenton reaction. They obtained 25% of mineralization. Lucas and Peres achieved 46.4% of TOC removal of Reactive Black 5 aqueous solution using photo-Fenton system. Neamtu et al. obtained 49.32% of Reactive Yellow 84 and 73.52% Reactive Red 120 mineralization in photo-Fenton treatment. Chacn et al. reached 84% of TOC removal of Acid Orange 24 using photo-Fenton degradation. Finally, Kuai et al. studied degradation of Acid Orange 7 and achieved 90.09% of TOC removal by UV/Fe0/H2O2 system.  Figure 6. Decolourization efficiency comparison of UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2 processes after 2 hrs.  Figure 7. Mineralization efficiency comparison of UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2 processes Higher decolourization and mineralization extents as well as lower amount of remained 1,4-phenylenediamine in the system on the end of the treatment process in UV/Fe3+/H2O2 (Figures 6 and 7) in comparison with Fe3+/H2O2 process (Figures 3 and 4) are consequence of additional formation of hydroxyl radicals by the photolysis of hydrogen peroxide and reduction of ferric ions. Another set of experiments was performed in order to investigate the efficiency of direct UV photolysis on DO39 degradation in model wastewater. The quantum yield of DO39, 0.0021 mol Ein-1, was determined by trial and error method inserting values into the model. The used model, given by Eq. (7), is a modified version of the so-called LL model, a semi-empirical model based on the Lamberts law, proposed in the literature Eq. (7) (Beltran, 2003)  EMBED Equation.3  (7) where (, (, I0, and L stand for the quantum yield, molar absorption coefficient, the incident photon flux by reactor volume unit and effective optical path in the reactor, respectively. Once I0, 3.4210-6 Ein L-1 s-1, and L, 3 cm, were determined by actinometry experiments, the quantum yield of DO39 could be calculated. The value of molar absorption coefficient of DO39, ( = 2050.07 M-1 cm-1, was calculated from the Eq. (8) by measuring absorbance of the DO39 solution at 254 nm. Absorbance A, can be expressed as: A = l ( c (8) where l is the path length, cm, and c the dye concentration at time t, M. The results of DO39 decolourization and mineralization kinetics by UV/Fe3+/H2O2 process are presented in the Figure 8. It can be seen that proposed model comprises with the experimental data relatively well. Discrepancy could be again explained by the interference of ferric complexes absorption spectra and formation of carboxylic acids as by-products of DO39 degradation and their reaction with ferrous ions. By the trial and error method decolourization and mineralization reaction rate constants are found to be 9 EMBED Equation.3 1010 M-1 min-1 and 2 EMBED Equation.3 109 M-1 min-1, respectively.  Figure 8. Decolourization and mineralization kinetics of the optimal UV/Fe3+/H2O2 process 4. CONCLUSIONS Fenton type, Fe2+/H2O2, Fe3+/H2O2, Fe0/H2O2 and corresponding photo-assisted processes, UV/Fe2+/H2O2, UV/Fe3+/H2O2 and UV/Fe0/H2O2 were successfully applied for treatment of DO39 model wastewater. Decolourization of DO39 model wastewater in the range of 82 up to 96% was achieved by all studied process. Significant enhancement of mineralization was achieved in the Fenton type processes assisted with UV irradiation from 47.6 up to 76.2% of TOC removal for process using Fe2+-salt, 47.9 up to 70.2% TOC removal for those using iron powder and from 64.5 up to the overall highest 76.9% of TOC removal using Fe3+-salt as the source of iron catalyst. The kinetics of DO39 degradation and mineralization follows pseudo-first order kinetics with the rate constants 9 EMBED Equation.3 1010 M-1 min-1 and 2 EMBED Equation.3 109 M-1 min-1, respectively. REFERENCES Arslan, I., Balcioglu, A.I., Tuhkanen, T., Advanced Oxidation of Synthetic Dyhouse Effluent by O3, H2O2/O3 and H2O2/UV Processes, Environ. Technol., Vol. 20, No.9, 921-931 (1999). Beltran, F.J. Ozone-UV radiation-hydrogen peroxide oxidation technologies in Chemical Degradation Methods for Wastes and Pollutants, M.A. Tarr, Ed., Marcel Decker, Inc., New York, 1-77 (2003). Chacn, J.M., Leal, T., Snchez, M., Bandala, E.R., Solar photocatalytic degradation of azo-dyes by photo-Fenton process, Dyes Pigments, Vol. 69, No.3, 144-150 (2006). Grymonpr, D.R., Sharma, A.K., Finney, W.C., Locke, B.R., The role of Fentons reaction in aqueous phase pulsed streamer corona reactors, Chem. Eng. J., Vol. 82, No.1-3 SI, 189-207 (2001). Gupta, R.S.,  Environmental Engineering and Science, An Introduction , Government Institutes, Rockville, 301-319 (1997). Kuai, H., Koprivanac, N., Sraan, L.,  Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study, J. Photochem. Photobiol. A: Chem., Vol. 181, No.2-3, 195-202 (2006). Levec, J., Wet Oxidation Processes for Treating Industrial Wastewaters, Chem. Biochem. Eng. Q., Vol. 11, 47-58 (1997). Lucas, M.S., Peres, J.A., Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigments, Vol. 71, 236-244 (2006). Malik, P.K., Sanyal, S.K., Kinetics of decolourisation of azo dyes in wastewater by UV/H2O2 process, Sep. Purif. Technol., Vol. 36, No.3, 167-175 (2004). Malik, P.K., Saha, S.K., Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Sep. Purif. Technol., Vol. 31, No.3, 241-250 (2003). Meric, S., Kaptan, D., Olmez, T., Color and COD removal from wastewater containing Reactive Black 5 using Fentons oxidation process, Chemosphere, Vol. 54, No.3 435-441 (2004). Muruganandham, M., Swaminathan, M., Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology, Dyes Pigments, Vol. 63, No.3, 315-321 (2004). Muruganandham, M., Swaminathan, M., Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes a comparative study, Sep. Purif. Technol., Vol. 48, No.3, 297-303 (2005). Neamtu, M., Yediler, A., Siminiceanu I., Kettrup, A., Oxidation of commercial reactive azo dye aqueous solutions by the phto-Fenton and fenton-like processes, J. Photochem. Photobiol. A: Chem., Vol. 161, 87-93 (2003). Nirmalakhandan, N., Modelling Tools for Environ  l n s u p R \ c d e j o p q w ٻ٫٫ٜٻٻ٫ٍ~~kXkX%hh5DB*CJaJmH phsH %hhB*CJaJmH phsH hhTCJaJmH sH hh CJaJmH sH hhCJaJmH sH hh5DCJH*aJmH sH hh_CJaJmH sH hhpsCJaJmH sH hh5DCJaJmH sH h(h(mH sH h(h(5mH sH  cdij12) $`a$gdV$a$gd0 $`a$gdS $a$gd]x<$a$gd(˵ STYnyW[RS?A{l]RFRhVh5DH*mH sH hVh5DmH sH h0h5DCJaJmH sH hh1WCJaJmH sH " jghh5DCJaJmH sH hh5DCJH*aJmH sH hh5DCJH*aJmH sH %hh5DB*CJaJmH phsH hh#CJaJmH sH %hh.PB*CJaJmH phsH hh5DCJaJmH sH hhS CJaJmH sH  +-STdfhlmn迴菀q^qNNh0h5DCJH*aJmH sH %h0hAeB*CJaJmH phsH h0hAeCJaJmH sH h0hQCJaJmH sH h0h5DCJaJmH sH hVhVmH sH hVh mH sH hVh 4mH sH  jhVh5DH*mH sH hVh5DH*mH sH  jhVh5DmH sH hVh5DmH sH hVh5DH*mH sH nopqtv{|}jk詡Ζxh0h5DCJaJmH sH h0h 4CJaJmH sH hVh 4mH sH hVmH sH hVhVmH sH hVh mH sH  jhVh5DH*mH sH hVh5DH*mH sH  jhVh5DmH sH hVh5DmH sH hVh5DH*mH sH /klmnrstuyz  轲觟蓈yiyh0h5DCJH*aJmH sH h0h5DCJaJmH sH hVh 4mH sH hVh5DH*mH sH hVmH sH hVhVmH sH hVh mH sH  jhVh5DH*mH sH  jhVh5DmH sH  jnhVh5DmH sH hVh5DmH sH hVh5DH*mH sH "$%'()*}123yjh0h5CJaJmH sH 0jh0hdT,CJUaJmHnHsH tHuh(9hDQmH sH hDQhDQ5mH sH hDQ5mH sH h0hDQCJaJmH sH h0hZXSCJaJmH sH h0h5DCJH*aJmH sH h0h5DCJaJmH sH h0h5DCJH*aJmH sH )!'(*WXacefghlnpqrsz{}~qqqqqqh0h'XCJH*aJmH sH h0h'XCJH*aJmH sH h0h56aJmH sH h0h'XCJaJmH sH h0hQCJaJmH sH %h0h5B*CJaJmH phsH h0h5CJH*aJmH sH h0h5CJaJmH sH h0h5CJH*aJmH sH ,)*WXq"s"t"""&;(6,/////3344gdw$a$gdw$a$gddT,gdIR$a$gd0gd$a$gdps $`a$gddT,gdzA gdpsY!_!!p"q"r"s""##############ⲢqaaaaN%h0h5B*CJaJmH phsH h0h5CJH*aJmH sH %h0hB*CJaJmH phsH h0h5CJH*aJmH sH h0h56aJmH sH hdT,h5CJ]aJmH sH (jhdT,h5CJU]aJmH sH h0hQCJaJmH sH h~HCJaJmH sH h0h5CJaJmH sH h0h'XCJaJmH sH #$$%%%%%%&'&' ' '''((((((((ʸʦʛʌzjjWWHh0hhiCJaJmH sH %h0h8B*CJaJmH phsH h0h5CJH*aJmH sH " jlh0h5CJaJmH sH h0hjCJaJmH sH h(9h5mH sH " jh0h5CJaJmH sH " jh0h5CJaJmH sH h0h5CJaJmH sH %h0h5B*CJaJmH phsH %h0hB*CJaJmH phsH (((7)8)B)C)D)E)))#*$*'*)*F*G*********++++2+3+A+B+μέΊ{fμTΚΊΊΊTΊT" jlh0h5CJaJmH sH (h0hxB*CJH*aJmH phsH h0hxCJaJmH sH h0h5CJH*aJmH sH %h0hdB*CJaJmH phsH h0hdCJaJmH sH " jmh0h5CJaJmH sH h0h5CJaJmH sH h0hhiCJaJmH sH %h0hAeB*CJaJmH phsH  B+Y+Z+l+m+++K,-%.&.'.-...1.8.9.:.;._.a.d.f.g../2/9//////񰞰񰞰th\hIRhj5mH sH hIRhIR5mH sH h0h0CJaJmH sH hjCJaJmH sH h0h`CJaJmH sH "h0h56CJH*aJmH sH h0h56CJaJmH sH h0h pCJaJmH sH " jlh0h5CJaJmH sH h0h5CJH*aJmH sH h0h5CJaJmH sH  //000000&1'141111111222252U2V2Y2Z2[2\2_2`2222津vvvvc%h0hIHB*CJaJmH phsH h0hIHCJH*aJmH sH h0hIHCJaJmH sH h0hkCJH*aJmH sH h0h,CJaJmH sH %h0hdB*CJaJmH phsH h0hkCJH*aJmH sH h0hQCJaJmH sH h0hkCJaJmH sH h(9hIRmH sH  22333383:3B3R33333333333333333டoaQAAQh0hk6H*aJmH sH h0hk6H*aJmH sH h0hQ6aJmH sH $h0hhi6B*aJmH phsH h0hk6aJmH sH h"YFhkCJaJmH sH jh(9hkUmH sH h0hWG8CJaJmH sH %h0hIHB*CJaJmH phsH h0hIHCJH*aJmH sH h0hIHCJaJmH sH h0hIHCJH*aJmH sH 333333333333444#4$4F4G444444444455555B6D6F6G6H6I6M6O6Q6R6S6T6񴥕rrrrrrh0hdT,CJH*aJmH sH %h0hdT,B*CJaJmH phsH h0hdT,CJH*aJmH sH h0hdT,CJaJmH sH h0hkCJaJmH sH h0h`6aJmH sH h0hk6H*aJmH sH h0hk6H*aJmH sH h0hk6aJmH sH ,T6[6\6^6_6`6a666666666 7 7 777777+7-7/707172788884858F8H8J8K8L8M8Q8S8񯠑wmmwhEshk6H*hEshk6H*hEshQ6hEshk6h"YFhkCJaJmH sH jh(9hkUmH sH h0hkCJaJmH sH %h0hdT,B*CJaJmH phsH h0hdT,CJH*aJmH sH h0hdT,CJH*aJmH sH h0hdT,CJaJmH sH *488}8888 <XBZBBB8C9CDtFuFFFHHHHI$a$gdh$a$gdEsgdpsgdwgdEs$a$gdw $`a$gdEsS8U8V8W8X8_8`8b8c8d8e8o8|8}8~888888888899:;rcPc%h0h.FB*CJaJmH phsH h0hkCJaJmH sH h0hBCJaJmH sH h0hk6H*aJmH sH h0hk6H*aJmH sH h0hk6aJmH sH h"YFhkCJaJmH sH jbh(9hkUmH sH hEshk6aJmH sH hEsh`6hEshk6H*hEshk6H*hEshk6::d;f;h;i;j;k;;;;; <y<z<~<<<<<<<<<<<<<<<<<<<<<<<<<===== ==========❊%h0hBB*CJaJmH phsH %h0hkB*CJaJmH phsH " j-h0hkCJaJmH sH h0hkCJH*aJmH sH h0hkCJH*aJmH sH h0hkCJaJmH sH h0h,CJaJmH sH 6========>>>>*>+>.>/>0>1>4>5>>>>>>>>>"?J?K?S?T?y?Aಢqbqbqbh0h`CJaJmH sH h0hpfCCJaJmH sH h0hMrCJaJmH sH %h0h B*CJaJmH phsH h0h CJH*aJmH sH h0h CJaJmH sH h0h,CJaJmH sH h0hkCJH*aJmH sH h0hkCJaJmH sH h0hkCJH*aJmH sH "AIBJBLBMBNBOBWBXBYBmBnB}B~BBBBBBBBBBBBBBBBBBBB񾯾t__t__t__(h0hkB*CJH*aJmH phsH (h0hkB*CJH*aJmH phsH %h0hBB*CJaJmH phsH %h0h*FB*CJaJmH phsH jh(9hkUmH sH %h0hkB*CJaJmH phsH h0htCJH*aJmH sH h0htCJH*aJmH sH h0htCJaJmH sH  BBBBBBBC C C CCCCCCCCC'C(C*C+C,C-C8C9CCʻ}}}}}}jW%hhh B*CJaJmH phsH %hhhkB*CJaJmH phsH hhhkCJH*aJmH sH hhhkCJH*aJmH sH hhhBCJaJmH sH hhhkCJaJmH sH j6'h(9hkUmH sH %hEshkB*CJaJmH phsH h0h`CJaJmH sH %h0h`B*CJaJmH phsH CCCCCC DDDDDDDkEmEuFvFFFFFFذlRChEsh; #B*mH phsH 2j/hEshEsB*CJEHUaJmH phsH -j4yJ hEsCJUVaJmHnHsHtH.jhhhkB*CJUaJmH phsH (hhhkB*CJH*aJmH phsH %hhhkB*CJaJmH phsH (hhh B*CJH*aJmH phsH %hhh B*CJaJmH phsH (hhh B*CJH*aJmH phsH FFFFFFFFFFFFFVGWGXG\GaGcGiGkGmGoGuGvG H HHHHHѹѡьvььvcNNNьѡcN(hhhkB*CJH*aJmH phsH %hhheFB*CJaJmH phsH +hhhk6B*CJH*aJmH phsH (hhhk6B*CJaJmH phsH . jehhhk6B*CJaJmH phsH . jFhhhk6B*CJaJmH phsH %hhhkB*CJaJmH phsH hEsB*mH phsH hEshkB*mH phsH HH HHHHHHHHHHHHHHHHHH챠{l`lQB2B2Bhhh%6CJaJmH sH hhh%CJaJmH sH hEshkB*mH phsH hEsB*mH phsH hEshB*mH phsH  hEshZI6B*mH phsH & jehEshk6B*mH phsH  hEsh86B*mH phsH  hEshk6B*mH phsH (hhhk6B*CJaJmH phsH (hhhkB*CJH*aJmH phsH %hhhkB*CJaJmH phsH HHIDIIIKIMINIOIPIKKKKKKKK!K"K#K%K)K+K1K2KEKѾсkVFѾсhhhkCJH*aJmH sH )j4hhhkCJEHUaJmH sH +jH hhhkCJUVaJmH sH %jhhhkCJUaJmH sH (hhhkB*CJH*aJmH phsH (hhhkB*CJH*aJmH phsH %hhhkB*CJaJmH phsH hhhkCJaJmH sH hhh%CJaJmH sH hhh%6CJaJmH sH EKFKGKHKJKKKLKMKOKSKUKdKeKfKqKzK{KKKKKzzgTA%hhh*FB*CJaJmH phsH %j8hhhkCJUaJmH sH %hhhY(B*CJaJmH phsH (hhhkB*CJH*aJmH phsH %hhhkB*CJaJmH phsH hhhkCJH*aJmH sH hhhkCJaJmH sH %jhhhkCJUaJmH sH )jR6hhhkCJEHUaJmH sH +jH hhhkCJUVaJmH sH IeKgKKKKKK,O-O.O9O:OOP_QL@LBLCLDLELOLȹyiiyiiyiiyiiyiihkh"0NCJH*aJmH sH hkh"0NCJH*aJmH sH hkh"0NCJaJmH sH hkhk5mH sH h85mH sH h8h85mH sH hhhhCJaJmH sH hhCJaJmH sH hjCJaJmH sH hhhkCJaJmH sH hhhkCJH*aJmH sH )OLPLRLSLTLUL|MMMMMMMMMNN4N6NNNNNNNNNNNNNNNNNNp[[(hkh"0NB*CJH*aJmH phsH )jEhkh"0NCJEHUaJmH sH +j[H hkh"0NCJUVaJmH sH %jhkh"0NCJUaJmH sH %hkh"0NB*CJaJmH phsH hkheFCJaJmH sH hkh"0NCJH*aJmH sH hkh"0NCJaJmH sH hkh"0NCJH*aJmH sH #N O OOOOOOOOOO*O+O,O-O.O8O9OƳ{{k^NB6hEshZXS5mH sH hEsh(5mH sH hhhk5CJaJmH sH hs5CJaJmH sH hkh%>*CJaJmH sH (hkh"0NB*CJH*aJmH phsH %hkh"0NB*CJaJmH phsH hkh"0NCJH*aJmH sH %jhkh"0NCJUaJmH sH )j~Ghkh"0NCJEHUaJmH sH +jmH hkh"0NCJUVaJmH sH hkh"0NCJaJmH sH 9O:OOOPOQOaOcOeOfOOOOOOOOOOOOOOOOOOOOOOOOOOOܲǝǝr]]]ǝ(hjhjB*CJ\aJmH phsH (hjh<B*CJ\aJmH phsH +hjhLgB*CJH*\aJmH phsH (hjhLgB*CJ\aJmH phsH (hjhCGB*CJ\aJmH phsH (hjh?LB*CJ\aJmH phsH (hjh:B*CJ\aJmH phsH hhh(CJaJmH sH "OOO;PP?PyPPPPPPPPPPPPPPPP.Q/Q1Q6Q뙮뮄ooooZoZE(hbaPhCGB*CJ\aJmH phsH (hbaPhLgB*CJ\aJmH phsH (hbaPh?LB*CJ\aJmH phsH (hbaPh:B*CJ\aJmH phsH (h\2hACB*CJ\aJmH phsH (h\2h:B*CJ\aJmH phsH %h\2h\2B*CJaJmHphsH(h\2h\2B*CJ\aJmH phsH (h\2h?LB*CJ\aJmH phsH 6Q?Q@QEQIQOQVQ]Q_QxQ~QQQQQQQQQQ֯օpppp[F[(hqhqB*CJ\aJmH phsH (hqhA~B*CJ\aJmH phsH (hqh?LB*CJ\aJmH phsH (hqh:B*CJ\aJmH phsH (hbaPh?LB*CJ\aJmH phsH "h<B*CJ\aJmH phsH (hbaPhbaPB*CJ\aJmH phsH (hbaPh:B*CJ\aJmH phsH (hbaPhLgB*CJ\aJmH phsH QQRR*R,R8RT?TDTXTYT_TaTlTmTTTTTTôᥖxiZiKZxhEPhYB*mH phsH hEPh(9B*mH phsH hEPhVB*mH phsH hEPh<B*mH phsH h$ hziB*mH phsH h$ hB*mHphsHh$ hB*mH phsH h$ h>jB*mH phsH h$ h$ B*mH phsH h$ h(DB*mH phsH h$ hCB*mH phsH h$ hBB*mH phsH TTTTTTTTHUIUPUZU_UfUgUjUqUrUsUUUUUUôôôÖôÇr]Hr](h/<h:B*CJ\aJmH phsH (h/<h B*CJ\aJmH phsH (h/<hziB*CJ\aJmH phsH hn!h%B*mH phsH hn!hn!B*mH phsH hn!h<B*mH phsH hn!hziB*mH phsH hn!h"oB*mH phsH hEPh<B*mH phsH hEPhVB*mH phsH hEPhEPB*mH phsH UUUUUUUUUUUUUUV VVVV"V)VvVwVyVVVVVVVVVVVԿԪԪԪkkԪkV(hYh:B*CJ\aJmH phsH (h/<h>B*CJ\aJmH phsH (h/<hCGB*CJ\aJmH phsH (h/<h:B*CJ\aJmH phsH (h/<h/<B*CJ\aJmH phsH (h/<hziB*CJ\aJmH phsH (h/<h B*CJ\aJmH phsH +h/<h B*CJH*\aJmH phsH !VVVV3W4W6W>WAWBWCWHWLWOWPWQWYW_WaWkWsWWWWWWW֬֗ւmmXmCX(h*h<B*CJ\aJmH phsH (h*hb>B*CJ\aJmH phsH (h*hziB*CJ\aJmH phsH (h*h:B*CJ\aJmH phsH (hYhYB*CJ\aJmH phsH (hYhCGB*CJ\aJmH phsH (hYhPB*CJ\aJmH phsH (hYh:B*CJ\aJmH phsH (hYhziB*CJ\aJmH phsH WWWWWWX X XX+X0XzX{XXXXXXXXXX֚p[E[E[E[E[E[+h'hB*CJH*\aJmH phsH (h'hB*CJ\aJmH phsH (h'h:B*CJ\aJmH phsH (h'hziB*CJ\aJmH phsH (h*hziB*CJ\aJmH phsH "h'B*CJ\aJmH phsH (h*hb>B*CJ\aJmH phsH (h*h*B*CJ\aJmH phsH (h*h:B*CJ\aJmH phsH XXXXXXXXXXXXXXXYYYY!YYYYYYYYYYԿԪԪԪkkkkVVVk(h'h'B*CJ\aJmH phsH (h'hziB*CJ\aJmH phsH (h'h.B*CJ\aJmH phsH (h'h:B*CJ\aJmH phsH (h'h'B*CJ\aJmH phsH (h'hziB*CJ\aJmH phsH (h'hB*CJ\aJmH phsH +h'hB*CJH*\aJmH phsH  XXYG˵͵εеѵӵԵֵ׵h]hgdj &`#$gd,d^`gdh$a$gdhYYYY !56>FG[\]blsشٴ۴Կֿ֪땀kkVkA(hJ9hHB*CJ\aJmH phsH (hJ9hYB*CJ\aJmH phsH (hJ9hB*CJ\aJmH phsH (hJ9hziB*CJ\aJmH phsH (hJ9h:B*CJ\aJmH phsH (h5h5B*CJ\aJmH phsH (h5hZ4@B*CJ\aJmH phsH U(h5hziB*CJ\aJmH phsH (h5h:B*CJ\aJmH phsH mental Engineers and Scientists, CRC Press, New York, 94, 109 (2002). Ramirez, J.H., Costa, C.A., Madeira, L.M., Experimental design to optimize the degradation of the synthetic dye Orange II using Fentons reagent, Catal. Today, Vol.107-108, 68-76 (2005). Shu, H.Y., Chang, M.C., Fan, H.J., Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters, Journal Hazard. Mater., Vol. 113, No.1-3, 203-210 (2004).     PAGE  !(Z[\]֙ss_s_sLs$h_/dhs[B*CJ\mH phsH 'h_/dhB*CJH*\mH phsH $h_/dhB*CJ\mH phsH $h_/dhziB*CJ\mH phsH $h_/dh:B*CJ\mH phsH (hJ9hziB*CJ\aJmH phsH (hJ9hJ9B*CJ\aJmH phsH (hJ9h:B*CJ\aJmH phsH (hJ9hB*CJ\aJmH phsH µɵʵ˵̵εϵѵҵԵյ׵ص޵ߵڴڡǐztztph5 h50J jh50J Uh Jjh JU!h_/dhZXSB*CJmH phsH $h_/dhziB*CJ\mH phsH $h_/dhB*CJ\mH phsH $h_/dh:B*CJ\mH phsH $h_/dh_/dB*CJ\mH phsH $h_/dh"B*CJ\mH phsH 9 0&P 1h:p . A!"#$% `!&5*}'Ae~x;=Z xڽX{hdg?wI&dI6pw'n(tCLҨݤnjZknZ?]Rh1"R4BD*V*U- ݺxΝ΄-tggw^*HXyil,# _TSVQ\h#?=O X_wi,e__q{ xH~]ݲ;#vTq+!eEy)f61UVvZڬˆԍ[hܲqsmOS&o>nGlq+_Z7OKyaױUZ*ڇa&}ؠk}M:q #yl ?7%|BdAmOSv;bk[Q~N /X* zӘ}Qjӗ/\9*hL'@߲= eO܃z$ٳ?&?$B2)LꛃH{pIFJr7yݼ! ĥn~-7> <ܨ6f ? ?xz$ߋWx]V`́M~ $EmR~ˎ:V' S뭓`ʳ`Scrkǭ[`PC1- 2SsdUS5]S5R9qޠEgOT:VX4TԋudZ7\6>K;Wj;? H)րyxk #Q| 䛌8Xmc6W7Z}4\9ys_ʡ:,NP]X$y$h!AK=PmވxW୘}(ٲ>Q?"C Jҏ}W΃"Ra֭`H2Ȱ g2)Cӧ*p)#T: ,JAdtHCtaQ3,hEqAu詈dU$k"9Qo2,Gr+cm.Q v< I[iLZ, 䰠Oa>^)B_rOF*vCZ{#lpBLQ1jF S 7!~ jA;!P ᓵlBT̴gZLI'c+BӍsk:\U1i\f~sY<*ܧN_/KW3 Y bkL"㎿Tx۬T5Tl̞y|̂`*pB.ЗlX:I"WH/Z;۬")B")8IY|W \^Mr$a8q*u \PVʚɚ*/NM/w=ΐ a rId#Mg8F T24 koa}}} CipNGI[/~UueeAe"gH@vş “k"~p|p/ܭjayeb^Ve(ay#moa b;u¿ S\ZX^:H^j # \%#+q.#jnz|?XXUp"~0OtЋ_TȢ ^E=Itr\n裫HY8LVS 0-W+[Z/ \Fc?s۬@`[-RZtkJIn|>!%YDXsj"Sk?rTWePzGKw>p'd FKtpl=`yʹ~l=g9 3ktBE iZ7לrj#dXZIZ(,*Zr I1FnkXBYE0f#֋?1 21fb13ź[⇪# Dv0^LNk "iWL|L&׳WPavH֙b&\.>;}q&}c|܍1w.Ѳ+?DEd/f}b6W^Qy„qUݘ6&=e<!#;ÀKԽ}?Հ9GR,#fvJ0 8#%fFLR3#fRv SRTk܏GIyﵜΗhՋ6Z~ ln>RV S% GIc>1ZmK +q3|0_$ 'VP!Lmi97Wx_Xf"QaJyo1cZcsi?6 P+wdi[U+oۭc_Qqx؏?؞swm,}u`*6~9z'[ag[ )Grm7i,K/ϡ/77kΎA"J{{qe QG|OrN '-pyH?*48 ,".%MT~cOmSZ%b{.H ”K͸H,L˽n,']͸T,UijEjIKgSg*'\ZMzKK>tB%`K0Q fUˎa8oLP_Hb5e_ ,y\H%,0&^2F';(XLb“2!GT$_'7L:O "/hMexq#9 fȸ w2&"7)(M _Hʠ1:'t'1i2䣍oio> ^2:+Ͻc {~S5X=ѳOJu<9kuU64ѸDG3jǪq;4dy.]Xixxtϧyx/֊%4'Jfxƒ3Z\+|&tb9L d&/;abK'^ ᳜1;){s_qszV%zLўYežC c%+}n1/߬:Wfͬv,}GXosnQmCcm֛eZ=gm֛k, f1F5"_aس$ӨvauIS׉>feՌʪKpkk֭Jw R:>Sc쫥Ooe%>>_}Y57ӨFv<]b<+۰wէugF]c5#jfg)?/Ύ^% 8 L֗%m6.Xqx;Bw8+u."O3Y}l֨f<,c5o9?˟ GX/W7k@ȟ>@k~ԟeBO9HLRy: 3<@k03L\`>1`b@%_w/ baz=L4P?3b+9fh1āy3wp~dРhNk賍kHyb'o S\r.IJ5{;܌E簈9f+lY^.CB!Qc_xK_qG QG|*?O?xj?lO9gC7reO/yw@ U;,?7T,rtPCYks0qt& cXsL8r#^W5e{FRc.__ZXʻ',eźkI|xY=d9v 7ߑLra*n+[?"ߟu.Zs5R7bsOXqĞbqOZ܉?K{F/~@(:km=^fS͂"5cԽ-zALbVVU#˕\MB)6 p֞gbZɜZ!NLtV%O [q03;mVm 1e<鑳s+As'ۅPAbD3jhF_g'ۄ0|Jge~97fڥ R2.DCLOM,/(,b}i׸2ςIKѾT7z*轢-فh/ ⶂڄRGZ/zivPo<6MԀt![ Zoi; Z:/:qs --Mib\'-?iٞ>,MN҄3ݻun\ڡ+i!cXڝi55 -m2ZyN -ڢYh页E h`$h}d>ao}^ -=6{-Ѻ)u0BKIZGZFEqF9|5JN:厢BKY2Z-jfVG[2"zsu:yt:<]6kA+S!V 8 =pk5bT )W)T}R){ .Z2ZX+]$hXh5KVh5_CBK-( -ڔ(h) -ݑB:VRwROkV.iҖ.Z*mc\h:m[AΖ+}wYh̉A)HZ-Z&EqC ҖQz:Xm;wg}_]|þI#ƢZިQo٣<6ٗ,ku];56Z# kQ -]ڲC@8-ɞ6ZӄU~dBK/]Y Qg%XhKY2-6Z%%uu5u:s 3ZEqFOZoZyKo-r*X+}PkfVkBWDk¾Uݽք&>}JzN< K|wIIЭlw$=~G4D=黼AՋ[(MX ùh<3wK%4T;f-vw800)BՑ` Bk,̴09ׁ0ߒvtPgyf~ hf^3_lxH`.N N)~,.-,/ YiK* SU G~baO;nrXiaӝkUՕif}ՅH0lt$!^C(@3=gDd >>  # A"`"CP.k:DI @=CP.k:( FG:xmlTEpR\"Ji@h)B4( iHG *?#Hc$EP ԙww{×Lξٙٙݹ X!v!gO9R#f8Yp 驠=i"XG `"Bٕ*w"iD-gO , d~ңxUyv+<*5J3 C xWW20qB!B„. E>r:::H|]tye]|L#zcsG$'+lWDx /il~vGS a oO @o0fv5Y2.`?']JpKIC~1tߤ…WBC#1#m DCy@DoD^ ň`_Xᏼ33 GOI2Ij-V=}x> | v |m]GI6z#olkcMSlowW1G`C {ZC_j(>IYF6)LtWm@oArN'?m ǹtS,OQ,%y:>QL|)E}K[_Ȑ;eT2FedXOK6^nfn.C-BqXŞ $jyO"90}x_|dm⯎}pʢaE ^ᖅޟ,Wp5]r󽌡G9vbO !ӆbWS]SoȹhmDlv)!AQ[ڜCF>S01< Ds_G͆g8lַk31gVQ Or1cֈd'6)Vv {@ @ 7#lUr֘#7# }zW+zWz~l^O~SbQn;ebjCHٰXxŹ`N_(2 ڦ{[^H>#ybZ~Jr^ѯjs]4r\hWje~CA'_9狂ssp\ sDzC%5oR;Ձo':BwW G{o߽V:g |=Ǘ⥔s:״TOt󕐌qLR/zP^gG#A :P9rq#t0oO`M ϠBs @6~h۲ӆMK~Q8>#`_w#TNq4U-3f [>֞|֊c;͵6iNwTMmMlڊaWǰ%jWjk5\o 0>_Y<:?e?_Amu&|{rBV={zlNF~0᡾0d/gtV tO CO(Wpl7.9fgf\E@xzSޜt}r9-Cx9lvs\3X;[=̓/w2(w GJĥ]n2v~G:Dz߸xWMw*8/yGwwR4y:O|Se6F`:#&ӽDd >>  # A"`"+ј|2s4On;I @=ј|2s4On;* FG:xZklTE>}ЖRl.-/[jB U? QĈh4A!b|`RP (?lR%sٝNmoÛqf9s33h@Jfw`>@L}Ug@~ hX,ћUW Ǧ0)pEHg#.e!=c `X1d l,nERb<#z>듸\D)iZ|lS_:E~r:::(X^8GRL"g=6P^w;LlG776~5"#uk+՛KhuX̥@td~:X> װNk թ_M~x ,i ߽e]~8qG'p Dňf.!ޗ Kӓe>[QLRmL|]> ?YFtv~e[I6*#uQ7tQ=թO^Ip5E`;lr?1$4U %2MUvp[{)볎QK׽>OѲd9/z\T#G0^"~$pn s ʼ\OͿ~|_#קʥ/g3C9Rqf_-Ǟ(,ʁnyO!=>d>%l&|u.E;S,roN,T~βw^1tS^҇($X6EæT*tT}r.:'(|Ԗ:P3=4 3E1{)I@8vU~Lmx:T@ w]*Lك.b)ŵ>FzRٷ"Z~,In rϟTPmSi3#9$gG^[~reU;P}=S}_s[NP]6EЦb8;Cȸc6X?JvFye.)Wj?[[?iCߩ+5~/~Q?kCI.6d㞛8٢8i&v糂c r#VGR[kp+<:3 |.^c^/dvܓp\=ȸGpzuqp="bƭr] Y-t{"o"ƑDz{Y 1H摄GڝX){$Hgҟ܊8]`]M-\w6 m?j?ch.?b XWNLyU{V؍%j/0gcQMxm8\Os'% jlno>je1/;㇟r\K#_a㞟:*fވldnOI*%~PfAv"ٻcے83\}.-Uno/x$Kc"~ ;m091 <⑾3L/VNX[W+_[v-yj޻0$nUɱ3cc"7~^]II)JP&)mq YNFLiÕk.MCiyl`^mUmKmղK˶вKٲaDl;zѴʢj\͘M#*PWBD#77.ySul-#bZDT6`byS5W:ثǰ|a^Vwa9Ylv:[ͣq.w2(vGJ$78U4e s>Zi'q9tPجĜgo8} Ay٘u篿xSeF`>ȬS< Dd >>  # A"`" l+D3_Ŵ I @=~ l+D3_ŴpF FG:L x\ l~{mcs% #]10)4؀9Bp ش UsP0G! D(i E"pFmDӴjI v? =yo??"2]H73 @@>0 9з9`BOt$!a; )tMc"۟ m,Z0^1d YX ,pکn;w@ ["v#R3Na;nDE~zLnƎw#ڟ.lGs,!jRx]n8"BViT\S:GX_/usY:GnJRު{ ;6jƧKY1uk@jyn@~A-FQ;6_@Hy8'<]*3~Kfj㠮qo(2=ƌ4}/MZӷ7Nӟ4M^ӯ@O5}M_ӷvfFT/5qM_5}?QSOyM_:bX9һܗ#}/YgE&k!zGI4Z*y YEeϿ?ͻj(jrp[C.@';7>װdb$JG#ĶŶ*)X#i\rÒe"N71i4o6J|,ҷA>%KG6"i,X<$*Xcydzܰd"r-}DZ2^n={rÒD(-}'窂E82lMDdؖض,:V!MaaN!UT * =B[sIN焃9y{es)f!a&#cǸ3(,D"8_9`I>Zs,BIEGH/"`-Az1 K(Ai)DCov ZHiX` J+`ڿVXOa|߅G;9ƽ܇]H^ǗlT"~3,oCځ7_ٮ`e_y]tO%@~3R9dEW HcLÒmBi7;dj딻\ny|+6 lot|u-J,iv%{^/ټ`d_E<ΰd_ۯ8dNz}%e|ok/CZu/٬Q&G)l'@JcoXȯDZ5Z6+/ lgXRKVb{K6 RXįv%+F~R K_)V6"~M3,r!vK6˵e.:^-"³\bNtHs + K>53Vc9-MH;.]v0c4?gcc܉ {|⠀B뭟XS,8h®A%ڻZyV~kU>bs8%i|?kZwV ;xrXn;xg5>bg;k2ZK^+KKԵ/^K;D[wy;T_rn87D/~'+30f)u(%7qۺ9?ކڸCtܾ>p3p-erRw |p͸Y.}p{y}*Dy!盤ouX=Fl3Z=־%W)uQ anqou+uu4f\; }9z5 HϢte~/5J|Q%F,0f@OHl\rvPy~l) z½p^"x_>_c>1YxYGܺ7? /sZ|aٿO('sfx1KVޙh_mkSI0?KfYb|:"JXÄZCc}$?K1G9 H<@c݈ zٜuGEd2\/H1[bC#U|v̲hso<λy kD3 $p=sOWCjusw/Ie_!DWǏ؋C~||9oZ}-q_/^'_ ]2g~,;%w<[m} }w¾TԥD wP p/EX ̀Őy>,* 1Z]Qd.,F96fX2!=3j.cswSzxl!j!]r,3ḭ0r)No(S 25oDGϽ\ Zujdk"r"}q\t7r0#UG;PߍmDZDd>HI~nX>"ɢ BMJ>yX]TjQHUjX=xe[8{ HT\t"_r{Zݐo5979 ޫsͭ_u= % !mWx- +ݳ:;/a%O(+|V\k? ϾDd >>  # A"`"F¦3Kc#JI @=F¦3Kc#J( FG:x[lTUpv"ْVpx -Ph"#hED RR^vf@ECL%јTIQA $Ƙ`1!&uݳnwo2sw̜9sf+!GFPљ+kW.p0psxc ` 85$HZLDSq>{>N[P&x%P {lZ݊.Ǭ02H g܃PGԗϲGדE7E@ߧcD_pܯhUbh:|;)ɶJ{U=?w" ^|ϑfAj`4fۯB4sO [Dk:c3(c 6,AN}~z#__~ = M"\{3=tgS'p؈f ΡsHku5KQ'T|oӟR~'ēf{{E)ݓou}pOU_ydH}y77?`h=뾳 >{&7hwt?J:`'l@ޚ,&^*ن u?c 7;#'p-Sooe9>FsqQ*F aT"h.4ʴu'y](?C|&[יOrPPp'GW : (xgĹ{}?ˊj=Mf|p M^t<<ʼi=m^ b漢7>#v+:DBB3!!"p|3j-Z*X {ADzV:P >g*S ;,6œh;[/8wiZymrx⻒\F'}BG x=a#ŅnmFMHұ:U.>s3})f'[l%Z\lLiŬ4j#V.XֿV`rbr¥.G}e((uD}b[|ˤ.'2鵸L-SXlƴi6"C|CLҋi54Np=gh3_ųѨYsω\!v1uy9r_3]nR,ñ*ݳ\ذUCwզ}jgk4p'U h1%86o~Dd >>  # A"`"S Paz'@=S Pah( FG:xmlTEpz^^cKJh H  Q*@(~@5&b ј1`LƢh%U$1HĘμn߻p~ٙٙٝ ؄pICLS/] 1p @+ Eϡƪ\8>$Hn "OQE (2;1l(7!īͰǢeXXMe8/9f!A xww70>qB%abjn]eEQPV3߁5E@2dcD_Qpܯؤ17|iɶK{Uq!?Yџl&XkUJĂ G87f [5$@ Vө/9Z\xo눓,$TK~%?/ kQ 1بoOģ ,8s F6Kp}6]QUu`pTI;|dNIt}mɽϤɷo:>8pݧbaHȺ1`kzx:֘/60R'etz ٘}+ #lX] &^>*Y {}UXѵ?p=Tq/_'ݸ9U9"pr}5=ATD*x#t8sz<˒l=Mz|?I^T7¼Ƚi=i^yB;oZps>DB}(=q "f^W7Zƻ4O֊cOHDGmsʇZ8W|NgS ;d~UT{`B˵ O*{r'p)mpc*VzX | - hsK{|ڄjrHJ̌wo-(% s];QV@lEj~S|͖oi;!Q!Z-M8;ȸMk{X?TIc>q8Oi<sZ4۴mx6^9?=qC-s+ la}>'8>Gw̳2kf[oy2;نn `t{z= nt[l6;ׁb[iChٔA >"ΰ;'wxgwQmO&O*vK @!x{Е0WEׯ&70o@M7+},W?c/^#ZW;`7,ʚc9D[Omׁsn+1X&;y&QS Eu` [}f!#yP,m)1w3C;k4hѪZmG6hjLv%P`f!X6ٻ!6CՇSw&^g/IwLrP2vjgj_}b."WW969Ø 3`1Aa&}%^ɹSsh})v}y(<Ѿm/Np#^o0mϫH_qa(`}QcS nl1~lut{cY>+>Kv}6[`z6y9P@y}"Xu- Mۛpx{#__˾Ȳ ႘y[&oo"7-.S,c4ik6oikf:F nfx~=̛El$޾sb!琍?;*|ohw\N'S$+ŢjUnsbz% W z{O̢iۗt1ԣBHJDd 4b  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmopqrstuvwxyz{|}~Root Entry F*@ Data nBIWordDocumentObjectPool f**_1249482292Ff*f*Ole CompObjiObjInfo  !#$%&( FMathType 5.0 Equation MathType EFEquation.DSMT49qI DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   e@r  e@ eUVEquation Native e_1222503053 Ff*f*Ole ObjInfo  e@=="-  e@dc  e@DO39 () e@dt=="-I  e@ e0 e@  e@F  e@1"-exp  e@"-2.303eLc  e@DO39 ()[]{}Equation Native 0_1222503075 Ff*f*Ole ObjInfo |jMEOW  e@ԓk8kč  e@ԓk8kč  e@Equation Native 0_1222503259Ff*f*Ole ObjInfoEquation Native 0_1222503277Ff*f*Ole ObjInfoԓk8kč  e@Oh+'0  , L X d p| PREPARATION OF THE CAMERA-READYCPICNormal Korisnik61Microsoft Office Word@Equation Native 01Table0SSummaryInformation(DocumentSummaryInformation8"<  c $A? ?3"`?2$G{= ӱFzc/`!G{= ӱFzcz `%-:xڭVOQ[mP F$Bh V! 6BVXhƘ&6|={l4~ cb,Wt6 GVb &͂Yj>,+g'/sr3pV0a!ǫy897V c3++|y N.ɅGΓ+6-clrn:A]!8x|Lk(ԉ*ު mv,$ l^x <y.Pۓun4,#ޑ݈v n~4 (G3Kg@Yw.wznĒʂTL0,&ܤ&@Q mAd অ003223r1r:02]*dlVv0o7+KRsAleP 3X+t)Dd 0  # A2@ڧ2)Vl6I `!ڧ2)Vl:  ȽȽxcdd`` @bD"L1JE `x,56~) M @~;/:Pr>wznĒʂTL0,&ܤ&@Q mAd অ003223r1r:02]*dlVv0o7+KRsAleP 3X+t) Dd >>  # A"`" gR`}}) Z8@= gR`}})F FG: x\ pU>r!j`!@gO@?&$@NJI_P D R@e8mb#T`Fi"@@+-Z s=fs{7 )={=g}"`R4 I~֦tH <0 56Fa梦]4l ]RD$_&ҝǺm3 hxweC>0kedeF&*k׮A!eR&HmCxlHo[;E@O{#=le2ޯ܌Gk}.W9kFco9Ymݬ g ̃0\WT@Ylz/Pour/R-fr} 8 ɖGCZ_0 L8-2}e'Pa}3 uHb0NV$L[E@㣬IG叚iLrN-2o[^Q39/;}j> s Յ~G+hlt-++{*Oνܯ?]ճPi7_0}g!nԉ LxkC=4cU[ ̟ ~hLs㨪.F_*"~YG<';*cHV!ߪ3|N\߹P>u\xMWֱ i'*g([ Vp'{oHQwRkG Ogk63n_ n=yPs̲sF򮚼&o[hKX.i4nM[_4"M>N}4yMJ>3慙rM^j򃚼ZWk^6|&ߩɥ} ]cQuSc9f0yb8r@e?ue=(BX7L^O\,˶#YW֩MEr??K2H,!w4ReQ+cho`U9AȽzGX|,˶S*eH~i< WȻQl;uv_"M|c 0 kĹ$>!W!,yƚ;Ns>ؖt)Xi\T; E-JI:JV>Gs{1r8I:+}<􎂵HkepV#w f+ےH~kMz&n%l߄ i &w!1xd}zi+UA^؎ے6Eb.b8둷7ے/)XG~rc=j^MiU쏲?JxqB}sJ*Xƞu"<+mII22c3eX !{j#=0.>_RYHLY''`-~ 7nE+AS`)+EX$ s+ĔNy3Pn-LW +Itai.6 y`[ҙ`ea}5@[:`4f1b,O aJ>Ϸ;#7)/ +&oG"ayLm!aYR i 9U>.#lK:7Hrʘ˂b`[ҹ_zIo0y苼?(ؖti?Wa_2eF/݊ }ҔP'yyo-q=׫_|7Xb xe ^eK[Jؖ\Y–)NS=.l\sΕe.l\sese [(W\ùr [9use [(\9ùr [v{Kxa,O]t⇱KXzwY56 2kgXaJ/f:2nKXp+P 0㞲=7Uo pW1K6\t-bܥ6E.p{926.p{;3n n >.kUq,* n> $?bO]ϥya,bzfァkDr6RV.Tɶ6nK\5/lpkLnW곆$6g5~b3ullt7ғ3s}R^JY|{5AHLUϓ7UΖp:pyrOwSB9SGY|gfT_T}=4Su>F߻kSQHvK+4]17eh7}򩆌E=7)fL#Ypq.ybdb"|,C.ph_bpk,r|{.E\~0yEI‡$M~e=+:(XɈ `uаvk27w>6Oa׎N~6V7ħG٧ƍ⽺UU8Q["a68?u>lx4/^2+_Y/3s5r*{QݸDd 0  # A2@ڧ2)VlE`!ڧ2)Vl:  ȽȽxcdd`` @bD"L1JE `x,56~) M @~;/:Pr>wznĒʂTL0,&ܤ&@Q mAd অ003223r1r:02]*dlVv0o7+KRsAleP 3X+t)Dd 0  # A2@ڧ2)VlG`!ڧ2)Vl:  ȽȽxcdd`` @bD"L1JE `x,56~) M @~;/:Pr>wznĒʂTL0,&ܤ&@Q mAd অ003223r1r:02]*dlVv0o7+KRsAleP 3X+t)x&@6rs@%@  D՜.+,0  hp  ENSIC)P  PREPARATION OF THE CAMERA-READY Title  FMicrosoft Office Word Document #@@@ NormalCJ_HaJmH sH tH P@P Heading 1$$@&a$6CJ]mH sH uP@P Heading 2$$@&a$5CJ\mH sH uDA@D Default Paragraph FontViV  Table Normal :V 44 la (k(No List 6U@6 Hyperlink >*B*phLB@L Body Text$ a$CJmH sH uBP@B Body Text 2CJmH sH uFO"F KluwerBody 1$  mH sH u4@24 Header  p#4 @B4 Footer  p#@&Q@ Footnote ReferenceH*`Ob` SFGP_auteurs$d(a$CJKHaJmH sH tH nOrn SFGP_rfrences$rd^`ra$CJKHaJmH sH tH LOL SFGP-normal$da$ B*CJphdOd SFGP_mots_cles$dxxa$CJKHaJmH sH tH bOb SFGP-Equation$ 9!d<<a$CJKHaJtH O SFGP_titre_tableau.$>;dxx]>^`;a$6CJKH]aJmH sH tH pOp SFGP_titre_figure$dxxa$6CJKH]aJmH sH tH ZOZ SFGP-Figure$dxa$CJKHaJmH sH tH `O` SFGP_titre_2$dxa$5CJKHaJmH sH tH bOb SFGP_titre_3$d<a$6CJKH]aJmH sH tH .)@. 2s Page NumberJJ@J <\Subtitle!$a$56\]mHsHtH H+@"H C Endnote Text"CJaJmH sH tH Pcdij12)*WXqst% #&&&&&****..g/i/// 3B8D888"9#9:^<_<<<>>>>>OAQAAAAAAEEE#E$EEFIGHHKII]JJKKLLMN'OOPPPPPPPPPPPPPPP00000000000000000000000000*00*000s0s0s0s0s0s0s0s0s0s0s00*0*0*00.00h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/0h/00h/000000000"0"0"0000000000@0I00@0I00@0I00@0I00@0@0@0@0@0I00  nk#(B+/23T6S8:=ABCFHHEKKOLN9OO6QQXSTUVWXY-012345789:;<=>@ABCDEFGHIKLMNOPQRSTUVWY[\)4I X.6?JX/_<s<u<@AAA/A1ADDDDDDP::::: !/X2$&5*}'Ae;2$s\Y:xJXZ@6(  J  # A"`J  # A"`B S  ?2qP$ .ud4_X4 OLE_LINK1 OLE_LINK2 OLE_LINK5 OLE_LINK6 OLE_LINK3 OLE_LINK4--99>>P--99>>PXh <#Yh |#Zh ,[h K\h ,(]h $[C^h  !!!!!! """"B"D"s"u"##i$x$%%%%"%$%I%J%O%Q%r%%%%''((g)v)))**'+6+++,,----////$03000m2x2B3N333444546<666r7x777N8]8*999;;F<H<N=Q={==$>&>>?@@[AjABB$E*E0E9EAEIEpEwEEEEEEFF FFFhFlFFFFFFFFFFFIGRGHHHHHHHH IIIIKIPIIIIIII]JbJjJpJJJJJJJJJJJK KhKmKoKvKKKKKKKKLXL^LiLpLLLMMM-Mq>>>QAZAEE$F(FIGH=H?HIIKII]JJJJJnKoKKKJLMMMNNNOOOPPPPPPPPPPPPPPPPP333333333333333333333333333333333333333333354\)*X #%&&&)**.../g//$0 34 6B8N88#9,;_<|<<=;==>>>b?@OAAAAAFDE$EEEHIIIIIoKKLMMMOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP d4e9NX-Ti  M}/+3֏¸JT3z8IbWt<,hS7|hh^h`o(hh^h`o(.0^`0o(..0^`0o(... 0^`0o( .... 88^8`o( ..... 88^8`o( ...... `^``o(....... `^``o(........^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.--^-`OJPJQJ^Jo(- ^`OJQJo(o   ^ `OJQJo(   ^ `OJQJo( mm^m`OJQJo(o ==^=`OJQJo(   ^ `OJQJo( ^`OJQJo(o ^`OJQJo(hh^h`o(.hh^h`o(..0^`0o(...0^`0o(.... 88^8`o( ..... 88^8`o( ...... 88^8`o(....... `^``o(........ `^``o(.........^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`o(.^`o(..808^8`0o(...808^8`0o(.... ^`o( ..... ^`o( ...... ^`o(....... `^``o(........ `^``o(......... 7|8i@Z4@q@ACpfC(D.F"YFeFCG~HZI J?L"0N.PbaPIRZXSY Z8&Zs[<\`d_/dodevdAeqfLghzihijk"oZo psnqMrEsQt v$z]zD|_u}A~L~V}O*DYj>j )N8^GZxS hVh5h`{ kT_2s,*FMC~(9@0iU>X<:[YA9',VdBS HPk0>'XVjq"n< <*ps.5D`DQFBaIH:5LQlct '#EINPPPPPP::::@xVd67GHNPP@P$PL@P@P@PRP@Ph@UnknownGz Times New Roman5Symbol3& z Arial?5 z Courier New;Wingdings"1[&F1S&= D) D)!4dPP2QHX ?2s2PREPARATION OF THE CAMERA-READYCPICKorisnik4         CompObj'qMSWordDocWord.Document.89q