Pregled bibliografske jedinice broj: 308347
4D Data Compression Methods for Modeling Virtual Medical Reality
4D Data Compression Methods for Modeling Virtual Medical Reality // Proceedings of the 18th International Conference on Information and Intelligent Systems, September, 12 - 14, 2007, Varaždin, Croatia / Aurer, Boris ; Bača, MIroslav (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2007. str. 155-161 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 308347 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
4D Data Compression Methods for Modeling Virtual Medical Reality
Autori
Žagar, Martin ; Knezović, Josip ; Mlinarić, Hrvoje
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 18th International Conference on Information and Intelligent Systems, September, 12 - 14, 2007, Varaždin, Croatia
/ Aurer, Boris ; Bača, MIroslav - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2007, 155-161
ISBN
978-953-6071-30-2
Skup
18th International Conference on Information and Intelligent Systems, September, 12 - 14, 2007, Varaždin, Croatia
Mjesto i datum
Varaždin, Hrvatska, 12.09.2007. - 14.09.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
4D modeling; lossy and lossless compression algorithms; region of interest definition; modeling virtual reality
Sažetak
Virtual reality is based on sequences of volumetric images whose motion is captured in time. Visible human data have been used in many projects as a test data set. Temporal 3D visualizations of various anatomical parts have been used for education of medical students. Various organ models have been developed using this data. These data sets are typically very large in size and demand a great amount of resources for storage and transmission. Therefore it is necessary to compress such data both fast and efficiently. Also, medical datasets usually contain a region representing the part of the body under investigation, and noisy background with no diagnostic interest. Therefore, it is important to identify contained sub-volumes as different regions of interest. In this paper we propose combination of lossless and lossy compression models to obtain toset demands. Coding of 4D data models should be both fast and efficient. In this paper is shown that with defining the regions of interest there can be achieved higher compression rates. Therefore we proposed lossless coding of areas of high interest and lossy coding areas of small interest (background).
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0361959-1971 - Arhitekture integriranih računalnih i komunikacijskih sustava i usluga (Kovač, Mario, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb