Pregled bibliografske jedinice broj: 30645
Evaluation of tension splines
Evaluation of tension splines // Mathematical communications, 4 (1999), 1; 73-83 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 30645 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Evaluation of tension splines
Autori
Beroš, Ivo ; Marušić, Miljenko
Izvornik
Mathematical communications (1331-0623) 4
(1999), 1;
73-83
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Tension spline; B-spline; evaluation
Sažetak
Tension spline of order $k$ is a function that, for a given partition $x_0<ldots <x_n$, on each interval $[x_, x_{;i+1};]$ satisfies differential equation $(D^k- ho_i^2D^{;k-2};)u=0$, where $ ho_i$'s are prescribed nonnegative real numbers. Most articles deal with tension splines of order four, applied to the problem of convex (or monotone) interpolation or to the two-point boundary value problem for ODE. Higher order tension splines are desribed in several papers, but no application is given. Possible reason for this is a lack of an appropriate algorithm for their evaluation. Here we present an explicit algorithm for evaluation of tension splines of arbitrary order. We especially consider stable and accurate computation of hyperbolic-like functions used in our algorithm.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Current Mathematical Publications
- Mathematical Review
- Zentarblatt fur Mathematik