Pregled bibliografske jedinice broj: 30599
Solving second order parabolic system by simulation ofs of Markov jump processes
Solving second order parabolic system by simulation ofs of Markov jump processes // Mathematical communications, 4 (1999), 1; 63-73 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 30599 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Solving second order parabolic system by simulation ofs of Markov jump processes
Autori
Limić, Nedžad ; Rogina, Mladen
Izvornik
Mathematical communications (1331-0623) 4
(1999), 1;
63-73
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Parabolic system; Simulation; Markov jump process
Sažetak
Here are known methods of approximating the solution of parabolic $2^{;m nd};$ order systems by solving stochastic differential equations instead. The main idea is based on the fact that stochastic differential equation defines a diffusion process, generated by an elliptic differential operator on $cal R^{;m d};$. We propose a difference scheme for the elliptic operator, which possesses the structure of Markov (jump) process. The existence of such a scheme is proved, the proof relying on the choice of new coordinates in which the elliptic operator is "almost" Laplacian, and has the properties necessary for discretization. Time discretization, which involves difference schemes for parabolic equations with known stability difficulties, can thus be replaced by space discretization and simulation of the associated Markov (jump) process.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Math. Review
- Current Math. Publ.
- Math.Sci
- Zentarblatt fur Mathematik