Pregled bibliografske jedinice broj: 305559
Hand shape classification using DTW and LCSS as similarity measures for vision-based gesture recognition system
Hand shape classification using DTW and LCSS as similarity measures for vision-based gesture recognition system // The IEEE Region 8 EUROCON 2007 : International conference on "Computer as a tool" : Proceedings / Zajc, B. ; Kaczorek, T. ; Kleiber, M. ; Kurnik, W. ; Remy, J-G. (ur.).
Varšava: Institute of Electrical and Electronics Engineers (IEEE), 2007. str. 264-269 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 305559 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hand shape classification using DTW and LCSS as similarity measures for vision-based gesture recognition system
Autori
Kuzmanić, Ana ; Zanchi, Vlasta
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
The IEEE Region 8 EUROCON 2007 : International conference on "Computer as a tool" : Proceedings
/ Zajc, B. ; Kaczorek, T. ; Kleiber, M. ; Kurnik, W. ; Remy, J-G. - Varšava : Institute of Electrical and Electronics Engineers (IEEE), 2007, 264-269
ISBN
1-4244-0813-X
Skup
The IEEE Region 8 EUROCON 2007 : International conference on "Computer as a tool"
Mjesto i datum
Varšava, Poljska, 09.09.2007. - 12.09.2007
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
prepoznavanje; klasifikacija; mjere sličnosti; reprezentacija; znakovni jezik
(image recognition; image classification; similarity measures; image representation; sign language)
Sažetak
In this paper an approach to classify hand shapes into different classes according to the similarity measures between features is proposed. We show how to use an Exploratory Data Analysis to extract novel, single feature of hand from images. Based on the obtained curve-like shape of the feature, hands are classified into one of 21 possible classes of Croatian sign language using Dynamic Time Warping and Longest Common Subsequence as similarity measures. Performance of the system was evaluated with 1260 images. Results show that high classification accuracy can be obtained from a single feature recognition and a small number of training sample.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
023-0232006-1655 - Biomehanika ljudskih pokreta, upravljanje i rehabilitacija (Zanchi, Vlasta, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split