Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 305223

Neural network based tire/road friction force estimation


Matuško, Jadranko; Petrović, Ivan; Perić, Nedjeljko
Neural network based tire/road friction force estimation // Engineering Applications of Artificial Intelligence, 21 (2008), 3; 442-456 doi:10.1016/j.engappai.2007.05.001 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 305223 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Neural network based tire/road friction force estimation

Autori
Matuško, Jadranko ; Petrović, Ivan ; Perić, Nedjeljko

Izvornik
Engineering Applications of Artificial Intelligence (0952-1976) 21 (2008), 3; 442-456

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
tire/road friction; neural network; estimation; lyapunov stability; antilock braking systems; traction control systems; lugre friction model; model uncertainty estimation; radial basis function networks

Sažetak
This paper deals with the problem of robust tire/road friction force estimation. Availability of actual value of the friction force generated in contact between the tire and the road has significant importance for active safety systems in modern cars, e.g. anti-lock brake systems, traction control systems, vehicle dynamic systems, etc. Since state estimators are usually based on the process model, they are sensitive to model inaccuracy. In this paper we propose a new neural network based estimation scheme, which makes friction force estimation insensitive to modelling inaccuracies. The neural network is added to the estimator in order to compensate effects of the friction model uncertainties to the estimation quality. An adaptation law for the neural network parameters is derived using Lyapunov stability analysis. The proposed state estimator provides accurate estimation of the tire/road friction force when friction characteristic is only approximately known or even completely unknown. Quality of the estimation is examined through simulation using one wheel friction model. Simulation results suggest very fast friction force estimation and compensation of the changes of the model parameters even when they vary in wide range.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)
036-0363078-3018 - Upravljanje mobilnim robotima i vozilima u nepoznatim i dinamičkim okruženjima (Petrović, Ivan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nedjeljko Perić (autor)

Avatar Url Jadranko Matuško (autor)

Avatar Url Ivan Petrović (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Matuško, Jadranko; Petrović, Ivan; Perić, Nedjeljko
Neural network based tire/road friction force estimation // Engineering Applications of Artificial Intelligence, 21 (2008), 3; 442-456 doi:10.1016/j.engappai.2007.05.001 (međunarodna recenzija, članak, znanstveni)
Matuško, J., Petrović, I. & Perić, N. (2008) Neural network based tire/road friction force estimation. Engineering Applications of Artificial Intelligence, 21 (3), 442-456 doi:10.1016/j.engappai.2007.05.001.
@article{article, author = {Matu\v{s}ko, Jadranko and Petrovi\'{c}, Ivan and Peri\'{c}, Nedjeljko}, year = {2008}, pages = {442-456}, DOI = {10.1016/j.engappai.2007.05.001}, keywords = {tire/road friction, neural network, estimation, lyapunov stability, antilock braking systems, traction control systems, lugre friction model, model uncertainty estimation, radial basis function networks}, journal = {Engineering Applications of Artificial Intelligence}, doi = {10.1016/j.engappai.2007.05.001}, volume = {21}, number = {3}, issn = {0952-1976}, title = {Neural network based tire/road friction force estimation}, keyword = {tire/road friction, neural network, estimation, lyapunov stability, antilock braking systems, traction control systems, lugre friction model, model uncertainty estimation, radial basis function networks} }
@article{article, author = {Matu\v{s}ko, Jadranko and Petrovi\'{c}, Ivan and Peri\'{c}, Nedjeljko}, year = {2008}, pages = {442-456}, DOI = {10.1016/j.engappai.2007.05.001}, keywords = {tire/road friction, neural network, estimation, lyapunov stability, antilock braking systems, traction control systems, lugre friction model, model uncertainty estimation, radial basis function networks}, journal = {Engineering Applications of Artificial Intelligence}, doi = {10.1016/j.engappai.2007.05.001}, volume = {21}, number = {3}, issn = {0952-1976}, title = {Neural network based tire/road friction force estimation}, keyword = {tire/road friction, neural network, estimation, lyapunov stability, antilock braking systems, traction control systems, lugre friction model, model uncertainty estimation, radial basis function networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font