Pregled bibliografske jedinice broj: 304472
On quasi-definite quadratic forms in a Hilbert space
On quasi-definite quadratic forms in a Hilbert space // Fifth Conference on Applied Mathematics and Scientific Computing
Brijuni, Hrvatska, 2007. (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 304472 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On quasi-definite quadratic forms in a Hilbert space
Autori
Grubišić, Luka ; Kostrykin, Vadim ; Makarov, K ; Veselić, Krešimir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Fifth Conference on Applied Mathematics and Scientific Computing
/ - , 2007
Skup
Fifth Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Brijuni, Hrvatska, 09.07.2007. - 13.07.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
indefinite quadratic forms; Hilbert space
Sažetak
We present a perturbation theory for sign-indefinite quadratic forms in a Hilbert space. We specifically allow forms which are unbounded at both ends. Under an additional qualitative assumption on the structure of the form, which is in analogy to the structure of the so called quasi-definite matrices form Linear Algebra, we prove an operator representation theorem for those quadratic forms. Furthermore, with the help of weakly formulated Riccati equations we obtain subspace perturbation theorems for such operators and present accompanying estimates on the perturbation of the spectra. The example of the Stokes block matrix operator---which is associated to the Cosserat eigenvalue problem---is used to illustrate our theory and to show that our estimates can be attained. This is a joint work with V. Kostrykin, K. A. Makarov and K. Veselić.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb