Pregled bibliografske jedinice broj: 304471
On relative perturbation theory for block operator matrices
On relative perturbation theory for block operator matrices // 6th International Congress on Industrial and Applied Mathematics
Zürich, Švicarska, 2007. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 304471 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On relative perturbation theory for block operator matrices
Autori
Grubišić, Luka ; Veselić, Krešimir ; Tambača, Josip
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
6th International Congress on Industrial and Applied Mathematics
/ - , 2007
Skup
6th International Congress on Industrial and Applied Mathematics
Mjesto i datum
Zürich, Švicarska, 16.07.2007. - 20.07.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
theory of perturbations; operator matrices
Sažetak
We use weakly-formulated operator equations to study perturbation problems for 22 operator block matrices. We allow (integro) differential operators, defined by quadratic forms, as coefficients in these weak operator equations and block operator matrices. An analysis of the ``weakly formulated'' Sylvester equation yields new scaling robust bounds for the rotation of spectral subspaces of a nonnegative self-adjoint operator in a Hilbert space. Our bound extends the known results of Davis and Kahan. As an example we give constructive estimates for the convergence rates of eigenvalues and eigenfunctions of the Arch model eigenvalue problem as the diameter of the thin elastic (rod like) body tends to zero. Furthermore, this prototype problem is identified as representative for the whole class of non-inhibited stiff perturbation families. This class of perturbations is characterized by a kind of inf-sup condition. Another problem which we study is bounding a perturbation of the square root of a positive self-adjoint operator. The obtained estimate is also of the relative type and we use a Sylvester like equation to solve this problem (cf. Grubišić, L. ; Veselić, K. On weakly formulated Sylvester equations and applications, Integral Equations and Operator Theory, to appear, Preprint: http://arxiv.org/abs/math.SP/0507532). This is a joint work with K. Veselić, Hagen, Germany and J. Tambača, Zagreb, Croatia.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb