Pregled bibliografske jedinice broj: 303184
On arithmetic progressions on Pellian equations
On arithmetic progressions on Pellian equations // Acta Mathematica Hungarica, 120 (2008), 1-2; 29-38 doi:10.1007/s10474-007-7087-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 303184 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On arithmetic progressions on Pellian equations
Autori
Dujella, Andrej ; Petho, Attila ; Tadić, Petra
Izvornik
Acta Mathematica Hungarica (0236-5294) 120
(2008), 1-2;
29-38
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Pell equation; arithmetic progression; elliptic curves
Sažetak
We consider arithmetic progressions consisting of integers which are y-components of solutions of an equation of the form x^2-dy^2=m. We show that for almost all four-term arithmetic progressions such an equation exists. We construct a seven-term arithmetic progression with the given property, and also several five-term arithmetic progressions which satisfy two different equations of the given form. These results are obtained by studying the properties of a parametric family of elliptic curves.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts