Pregled bibliografske jedinice broj: 302797
Large scale vision based navigation without an accurate global reconstruction
Large scale vision based navigation without an accurate global reconstruction // Computer Vision and Pattern Recognition, June 18-23, 2007, Minneapolis, MN / Takeo Kanade, Gerard Medioni (ur.).
Minneapolis (MN), Sjedinjene Američke Države: Institute of Electrical and Electronics Engineers (IEEE), 2007. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 302797 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Large scale vision based navigation without an accurate global reconstruction
Autori
Šegvić, Siniša ; Remazeilles, Anthony ; Diosi, Albert ; Chaumette, François
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Computer Vision and Pattern Recognition, June 18-23, 2007, Minneapolis, MN
/ Takeo Kanade, Gerard Medioni - : Institute of Electrical and Electronics Engineers (IEEE), 2007
ISBN
1-4244-1180-7
Skup
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Mjesto i datum
Minneapolis (MN), Sjedinjene Američke Države, 18.06.2007. - 23.06.2007
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Autonomous navigation
Sažetak
Autonomous cars will likely play an important role in the future. A vision system designed to support outdoor navigation for such vehicles has to deal with large dynamic environments, changing imaging conditions, and temporary occlusions by other moving objects. This paper presents a novel appearance-based navigation framework relying on a single perspective vision sensor, which is aimed towards resolving of the above issues. The solution is based on a hierarchical environment representation created during a teaching stage, when the robot is controlled by a human operator. At the top level, the representation contains a graph of key-images with extracted 2D features enabling a robust navigation by visual servoing. The information stored at the bottom level enables to efficiently predict the locations of the features which are currently not visible, and eventually (re-)start their tracking. The outstanding property of the proposed framework is that it enables robust and scalable navigation without requiring a globally consistent map, even in interconnected environments. This result has been confirmed by realistic off-line experiments and successful real-time navigation trials in public urban areas.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0361935-1954 - Teorija, modeliranje i uporaba autonomno orijentiranih računarskih struktura (Ribarić, Slobodan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Siniša Šegvić
(autor)