Pregled bibliografske jedinice broj: 302791
Influence of the numerical conditioning to the accuracy of relative orientation
Influence of the numerical conditioning to the accuracy of relative orientation // Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on. Workshop BenCOS. / Ilkka Niini, Camillo Ressl, Peter Sturm, Olaf Hellwich, Volker Rodehorst, Daniel Scharstein (ur.).
Minneapolis (MN), Sjedinjene Američke Države: Institute of Electrical and Electronics Engineers (IEEE), 2007. str. 1-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 302791 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Influence of the numerical conditioning to the accuracy of relative orientation
Autori
Šegvić, Siniša ; Schweighofer, gerald ; Pinz, Axel
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on. Workshop BenCOS.
/ Ilkka Niini, Camillo Ressl, Peter Sturm, Olaf Hellwich, Volker Rodehorst, Daniel Scharstein - : Institute of Electrical and Electronics Engineers (IEEE), 2007, 1-8
ISBN
1-4244-1180-7
Skup
The second international ISPRS workshop Towards Benchmarking Automated Calibration, Orientation, and Surface Reconstruction from Images Held with IEEE CVPR 2007
Mjesto i datum
Minneapolis (MN), Sjedinjene Američke Države, 23.06.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
relative pose; performance evaluation
Sažetak
We study the influence of numerical conditioning to the accuracy of two closed-form solutions to the overconstrained relative orientation problem. We consider the well-known eight-point algorithm and the recent five-point algorithm, and evaluate changes in their performance due to Hartley's normalization and Muehlich's equilibration. The need for numerical conditioning is introduced by explaining the known occurence of the bias of the eight-point algorithm towards the forward motion. Then it is shown how conditioning can be used to improve the results of the recent five-point algorithm. This is not straightforward since the conditioning disturbs the calibration of the input data The conditioning therefore needs to be reverted before enforcing the internal cubic constraints of the essential matrix. The obtained improvements are less dramatic than in the case of the eight-point algorithm, for which we offer a plausible explanation. The theoretical claims are backed up with extensive experimentation on noisy artificial datasets under a variety of geometric and imaging parameters.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0361935-1954 - Teorija, modeliranje i uporaba autonomno orijentiranih računarskih struktura (Ribarić, Slobodan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Siniša Šegvić
(autor)