Pregled bibliografske jedinice broj: 302116
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative Keys
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative Keys // Proc. IEEE 23rd International Conference on Data Engineering (ICDE 2007) / Chirkova, Rada ; Oria, Vincent (ur.).
Los Alamitos (CA): Institute of Electrical and Electronics Engineers (IEEE), 2007. str. 1096-1105 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 302116 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative Keys
Autori
Podnar, Ivana ; Rajman, Martin ; Luu, Toan ; Klemm, Fabius ; Aberer, Karl
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. IEEE 23rd International Conference on Data Engineering (ICDE 2007)
/ Chirkova, Rada ; Oria, Vincent - Los Alamitos (CA) : Institute of Electrical and Electronics Engineers (IEEE), 2007, 1096-1105
ISBN
1-4244-0802-4
Skup
IEEE 23rd International Conference on Data Engineering (ICDE 2007)
Mjesto i datum
Istanbul, Turska, 15.04.2007. - 20.04.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
information retrieval; P2P
Sažetak
The suitability of Peer-to-Peer (P2P) approaches for full-text web retrieval has recently been questioned because of the claimed unacceptable bandwidth consumption induced by retrieval from very large document collections. In this contribution we present a novel indexing/retrieval model that achieves high performance, cost-efficient retrieval by indexing with \emph{;highly discriminative keys (HDKs)}; stored in a distributed global index maintained in a structured P2P network. HDKs correspond to carefully selected terms and term sets appearing in small numbers of collection documents. We provide a theoretical analysis of the scalability of our retrieval model and report experimental results obtained with our HDK-based P2P retrieval engine. These results show that, despite increased indexing costs, the total traffic generated with the HDK approach is significantly smaller than the one obtained with distributed single-term indexing strategies. Furthermore, our experiments show that the retrieval performance obtained with a random set of real queries is comparable to the one of centralized, single-term solution using the best state-of-the-art BM25 relevance computation scheme. Finally, our scalability analysis demonstrates that the HDK approach can scale to large networks of peers indexing web-size document collections, thus opening the way towards viable, truly-decentralized web retrieval.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
036-0362027-1639 - Isporuka sadržaja i pokretljivost korisnika i usluga u mrežama nove generacije (Matijašević, Maja, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivana Podnar Žarko
(autor)