Pregled bibliografske jedinice broj: 30164
Symmetric indefinite factorization of quasidefinite matrices
Symmetric indefinite factorization of quasidefinite matrices // Mathematical communications, 4 (1999), 1; 19-25 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 30164 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Symmetric indefinite factorization of quasidefinite matrices
Autori
Singer, Sanja ; Singer, Saša
Izvornik
Mathematical communications (1331-0623) 4
(1999), 1;
19-25
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
quasidefinite matrices; inertia; special linear systems; accurate solution
Sažetak
Matrices with special structures arise in numerous applications. In some cases, such as quasidefinite matrices or their generalizations, we can exploit this special structure. If the matrix $H$ is quasidefinite, we propose a new variant of the symmetric indefinite factorization. We show that linear system $Hz = b$, $H$ quasidefinite with special structure, can be interpreted as an equilibrium system. So, even if some blocks in $H$ are ill--conditioned, the important part of solution vector $z$ can be accurately computed. In the case of generalized quasidefinite matrix, we derive bounds on number of its positive and negative eigenvalues.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Mathematical Review
- Current Mathematical Publications
- Zentarblatt fur Mathematik